home *** CD-ROM | disk | FTP | other *** search
MacBinary | 1995-03-25 | 8.5 KB | [ TEXT/MMCC]
open in: MacOS 8.1
extracted
|
Win98
extracted
|
DOS
extracted
browse contents |
view JSON data
|
view as text
This file was processed as: MacBinary
(archive/macBinary ).
Confidence Program Detection Match Type Support
66%
dexvert
Compact Compressed (Unix) (archive/compact)
ext
Supported
10%
dexvert
MacBinary (archive/macBinary)
fallback
Supported
1%
dexvert
Text File (text/txt)
fallback
Supported
100%
file
MacBinary II, Sat Mar 25 23:56:46 1995, modified Sat Mar 25 23:56:46 1995, creator 'MMCC', type ASCII, 7843 bytes "Normal.c" , at 0x1f23 636 bytes resource
default (weak)
99%
file
data
default
74%
TrID
Macintosh plain text (MacBinary)
default
25%
TrID
MacBinary 2
default (weak)
100%
siegfried
fmt/1762 MacBinary (II)
default
100%
lsar
MacBinary
default
id metadata key value macFileType [ TEXT] macFileCreator [ MMCC]
hex view +--------+-------------------------+-------------------------+--------+--------+ |00000000| 00 08 4e 6f 72 6d 61 6c | 2e 63 00 00 00 00 00 00 |..Normal|.c......| |00000010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00000040| 00 54 45 58 54 4d 4d 43 | 43 00 00 00 00 00 00 00 |.TEXTMMC|C.......| |00000050| 00 00 00 00 00 1e a3 00 | 00 02 7c ab 9a a4 8e ab |........|..|.....| |00000060| 9a a4 8e 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 a4 69 00 00 |........|.....i..| |00000080| 2f 2a 0d 4e 6f 72 6d 61 | 6c 2e 63 0d 73 74 61 74 |/*.Norma|l.c.stat| |00000090| 69 73 74 69 63 61 6c 20 | 66 75 6e 63 74 69 6f 6e |istical |function| |000000a0| 73 20 72 65 6c 61 74 65 | 64 20 74 6f 20 74 68 65 |s relate|d to the| |000000b0| 20 6e 6f 72 6d 61 6c 20 | 64 69 73 74 72 69 62 75 | normal |distribu| |000000c0| 74 69 6f 6e 2e 0d 41 6c | 73 6f 20 73 65 65 3a 20 |tion..Al|so see: | |000000d0| 42 69 6e 6f 6d 69 61 6c | 2e 63 2c 43 68 69 53 71 |Binomial|.c,ChiSq| |000000e0| 75 61 72 65 2e 63 2c 20 | 45 78 70 6f 6e 65 6e 74 |uare.c, |Exponent| |000000f0| 69 61 6c 2e 63 2c 20 55 | 6e 69 66 6f 72 6d 2e 63 |ial.c, U|niform.c| |00000100| 0d 0d 09 66 3d 4e 6f 72 | 6d 61 6c 50 64 66 28 78 |...f=Nor|malPdf(x| |00000110| 29 3b 0d 09 70 3d 4e 6f | 72 6d 61 6c 28 78 29 3b |);..p=No|rmal(x);| |00000120| 0d 09 78 3d 49 6e 76 65 | 72 73 65 4e 6f 72 6d 61 |..x=Inve|rseNorma| |00000130| 6c 28 70 29 3b 0d 09 78 | 3d 4e 6f 72 6d 61 6c 53 |l(p);..x|=NormalS| |00000140| 61 6d 70 6c 65 28 29 3b | 0d 09 66 3d 4e 6f 72 6d |ample();|..f=Norm| |00000150| 61 6c 32 44 50 64 66 28 | 64 6f 75 62 6c 65 20 72 |al2DPdf(|double r| |00000160| 29 3b 0d 09 70 3d 4e 6f | 72 6d 61 6c 32 44 28 72 |);..p=No|rmal2D(r| |00000170| 29 3b 0d 09 72 3d 49 6e | 76 65 72 73 65 4e 6f 72 |);..r=In|verseNor| |00000180| 6d 61 6c 32 44 28 70 29 | 3b 0d 09 72 3d 4e 6f 72 |mal2D(p)|;..r=Nor| |00000190| 6d 61 6c 32 44 53 61 6d | 70 6c 65 28 29 3b 0d 4e |mal2DSam|ple();.N| |000001a0| 6f 72 6d 61 6c 32 44 20 | 69 73 20 61 20 47 61 75 |ormal2D |is a Gau| |000001b0| 73 73 69 61 6e 20 70 64 | 66 20 6f 76 65 72 20 74 |ssian pd|f over t| |000001c0| 77 6f 20 64 69 6d 65 6e | 73 69 6f 6e 73 2c 20 69 |wo dimen|sions, i| |000001d0| 6e 74 65 67 72 61 74 65 | 64 20 6f 76 65 72 20 61 |ntegrate|d over a| |000001e0| 6c 6c 20 6f 72 69 65 6e | 74 61 74 69 6f 6e 73 2c |ll orien|tations,| |000001f0| 0d 30 20 74 6f 20 32 b9 | 2e 20 72 20 69 73 20 74 |.0 to 2.|. r is t| |00000200| 68 65 20 64 69 73 74 61 | 6e 63 65 20 66 72 6f 6d |he dista|nce from| |00000210| 20 74 68 65 20 6f 72 69 | 67 69 6e 2c 20 5b 30 2c | the ori|gin, [0,| |00000220| 49 6e 66 5d 2e 20 0d 0d | 09 42 6f 75 6e 64 65 64 |Inf]. ..|.Bounded| |00000230| 4e 6f 72 6d 61 6c 49 6e | 74 65 67 65 72 73 28 64 |NormalIn|tegers(d| |00000240| 69 73 74 72 69 62 75 74 | 69 6f 6e 2c 6e 2c 6d 65 |istribut|ion,n,me| |00000250| 61 6e 2c 73 64 2c 6d 69 | 6e 2c 6d 61 78 29 3b 0d |an,sd,mi|n,max);.| |00000260| 46 69 6c 6c 73 20 74 68 | 65 20 22 64 69 73 74 72 |Fills th|e "distr| |00000270| 69 62 75 74 69 6f 6e 22 | 20 61 72 72 61 79 20 77 |ibution"| array w| |00000280| 69 74 68 20 6e 20 6f 72 | 64 65 72 65 64 20 69 6e |ith n or|dered in| |00000290| 74 65 67 65 72 73 20 73 | 6f 20 74 68 61 74 20 72 |tegers s|o that r| |000002a0| 61 6e 64 6f 6d 20 73 61 | 6d 70 6c 65 73 0d 66 72 |andom sa|mples.fr| |000002b0| 6f 6d 20 74 68 65 20 61 | 72 72 61 79 2c 0d 09 69 |om the a|rray,..i| |000002c0| 3d 64 69 73 74 72 69 62 | 75 74 69 6f 6e 5b 6e 72 |=distrib|ution[nr| |000002d0| 61 6e 64 28 6e 29 5d 3b | 0d 77 69 6c 6c 20 68 61 |and(n)];|.will ha| |000002e0| 76 65 2c 20 61 73 20 6e | 65 61 72 6c 79 20 61 73 |ve, as n|early as| |000002f0| 20 70 6f 73 73 69 62 6c | 65 2c 20 74 68 65 20 73 | possibl|e, the s| |00000300| 70 65 63 69 66 69 65 64 | 20 64 69 73 74 72 69 62 |pecified| distrib| |00000310| 75 74 69 6f 6e 2c 20 69 | 2e 65 2e 20 74 68 65 79 |ution, i|.e. they| |00000320| 20 77 69 6c 6c 0d 62 65 | 20 73 61 6d 70 6c 65 73 | will.be| samples| |00000330| 20 28 72 6f 75 6e 64 65 | 64 20 74 6f 20 69 6e 74 | (rounde|d to int| |00000340| 65 67 65 72 29 20 64 72 | 61 77 6e 20 66 72 6f 6d |eger) dr|awn from| |00000350| 20 74 68 65 20 69 6e 74 | 65 72 76 61 6c 20 5b 6d | the int|erval [m| |00000360| 69 6e 2d 2e 35 2c 6d 61 | 78 2b 2e 35 5d 2c 0d 77 |in-.5,ma|x+.5],.w| |00000370| 68 65 72 65 20 6d 69 6e | 20 61 6e 64 20 6d 61 78 |here min| and max| |00000380| 20 61 72 65 20 69 6e 74 | 65 67 65 72 73 2c 20 6f | are int|egers, o| |00000390| 66 20 61 20 6e 6f 72 6d | 61 6c 20 64 69 73 74 72 |f a norm|al distr| |000003a0| 69 62 75 74 69 6f 6e 20 | 77 69 74 68 20 74 68 65 |ibution |with the| |000003b0| 20 73 70 65 63 69 66 69 | 65 64 0d 6d 65 61 6e 20 | specifi|ed.mean | |000003c0| 61 6e 64 20 76 61 72 69 | 61 6e 63 65 2e 20 53 70 |and vari|ance. Sp| |000003d0| 65 63 69 66 79 69 6e 67 | 20 61 6e 20 69 6e 66 69 |ecifying| an infi| |000003e0| 6e 69 74 65 20 73 64 20 | 77 69 6c 6c 20 72 65 73 |nite sd |will res| |000003f0| 75 6c 74 20 69 6e 20 61 | 20 75 6e 69 66 6f 72 6d |ult in a| uniform| |00000400| 0d 64 69 73 74 72 69 62 | 75 74 69 6f 6e 20 6f 76 |.distrib|ution ov| |00000410| 65 72 20 74 68 65 20 69 | 6e 74 65 72 76 61 6c 20 |er the i|nterval | |00000420| 5b 6d 69 6e 2c 6d 61 78 | 5d 2e 20 28 54 68 69 73 |[min,max|]. (This| |00000430| 20 69 73 20 64 65 74 65 | 63 74 65 64 20 61 73 20 | is dete|cted as | |00000440| 61 20 73 70 65 63 69 61 | 6c 0d 63 61 73 65 20 61 |a specia|l.case a| |00000450| 6e 64 20 70 65 72 66 6f | 72 6d 65 64 20 71 75 69 |nd perfo|rmed qui| |00000460| 63 6b 6c 79 2e 29 20 4f | 6e 63 65 20 74 68 65 20 |ckly.) O|nce the | |00000470| 64 69 73 74 72 69 62 75 | 74 69 6f 6e 20 61 72 72 |distribu|tion arr| |00000480| 61 79 20 68 61 73 20 62 | 65 65 6e 20 66 69 6c 6c |ay has b|een fill| |00000490| 65 64 2c 0d 72 61 6e 64 | 6f 6d 20 73 61 6d 70 6c |ed,.rand|om sampl| |000004a0| 65 73 20 66 72 6f 6d 20 | 69 74 20 61 72 65 20 61 |es from |it are a| |000004b0| 20 66 61 73 74 20 77 61 | 79 20 6f 66 20 67 65 6e | fast wa|y of gen| |000004c0| 65 72 61 74 69 6e 67 20 | 62 6f 75 6e 64 65 64 20 |erating |bounded | |000004d0| 47 61 75 73 73 69 61 6e | 20 6e 6f 69 73 65 0d 74 |Gaussian| noise.t| |000004e0| 6f 20 62 65 20 61 64 64 | 65 64 20 74 6f 20 65 61 |o be add|ed to ea| |000004f0| 63 68 20 70 69 78 65 6c | 20 6f 66 20 61 6e 20 69 |ch pixel| of an i| |00000500| 6d 61 67 65 2e 20 4e 6f | 74 65 20 74 68 61 74 20 |mage. No|te that | |00000510| 22 6d 65 61 6e 22 20 61 | 6e 64 20 22 73 64 22 20 |"mean" a|nd "sd" | |00000520| 61 70 70 6c 79 20 6f 6e | 6c 79 0d 74 6f 20 74 68 |apply on|ly.to th| |00000530| 65 20 75 6e 63 6c 69 70 | 70 65 64 20 75 6e 64 65 |e unclip|ped unde| |00000540| 72 6c 79 69 6e 67 20 6e | 6f 72 6d 61 6c 20 64 69 |rlying n|ormal di| |00000550| 73 74 72 69 62 75 74 69 | 6f 6e 2e 20 43 61 6c 6c |stributi|on. Call| |00000560| 20 74 68 69 73 0d 09 6d | 65 61 6e 3d 4d 65 61 6e | this..m|ean=Mean| |00000570| 57 28 64 69 73 74 72 69 | 62 75 74 69 6f 6e 2c 6e |W(distri|bution,n| |00000580| 2c 26 73 64 29 3b 0d 74 | 6f 20 63 6f 6d 70 75 74 |,&sd);.t|o comput| |00000590| 65 20 74 68 65 20 6d 65 | 61 6e 20 61 6e 64 20 73 |e the me|an and s| |000005a0| 64 20 6f 66 20 79 6f 75 | 72 20 69 6e 74 65 67 65 |d of you|r intege| |000005b0| 72 20 64 69 73 74 72 69 | 62 75 74 69 6f 6e 2e 20 |r distri|bution. | |000005c0| 54 68 65 20 72 75 6e 74 | 69 6d 65 20 6f 66 20 0d |The runt|ime of .| |000005d0| 42 6f 75 6e 64 65 64 4e | 6f 72 6d 61 6c 49 6e 74 |BoundedN|ormalInt| |000005e0| 65 67 65 72 73 20 77 69 | 6c 6c 20 62 65 20 70 72 |egers wi|ll be pr| |000005f0| 6f 70 6f 72 74 69 6f 6e | 61 6c 20 74 6f 20 6d 61 |oportion|al to ma| |00000600| 78 2d 6d 69 6e 2b 31 2c | 20 61 6e 64 20 6e 65 61 |x-min+1,| and nea| |00000610| 72 6c 79 20 69 6e 64 65 | 70 65 6e 64 65 6e 74 0d |rly inde|pendent.| |00000620| 6f 66 20 6e 2e 20 49 74 | 20 74 61 6b 65 73 20 61 |of n. It| takes a| |00000630| 62 6f 75 74 20 30 2e 33 | 20 73 20 6f 6e 20 61 20 |bout 0.3| s on a | |00000640| 4d 61 63 20 49 49 63 69 | 20 66 6f 72 20 6d 61 78 |Mac IIci| for max| |00000650| 2d 6d 69 6e 2b 31 3d 32 | 35 36 2e 0d 0d 43 6f 70 |-min+1=2|56...Cop| |00000660| 79 72 69 67 68 74 20 28 | 63 29 20 31 39 38 39 2c |yright (|c) 1989,| |00000670| 31 39 39 30 2c 31 39 39 | 31 2c 31 39 39 32 2c 31 |1990,199|1,1992,1| |00000680| 39 39 35 20 44 65 6e 69 | 73 20 47 2e 20 50 65 6c |995 Deni|s G. Pel| |00000690| 6c 69 0d 48 49 53 54 4f | 52 59 3a 0d 31 39 38 39 |li.HISTO|RY:.1989| |000006a0| 09 64 67 70 20 77 72 6f | 74 65 20 69 74 2e 0d 34 |.dgp wro|te it..4| |000006b0| 2f 38 2f 39 30 09 64 67 | 70 09 63 68 61 6e 67 65 |/8/90.dg|p.change| |000006c0| 64 20 74 68 65 20 6e 61 | 6d 65 73 20 6f 66 20 74 |d the na|mes of t| |000006d0| 68 65 20 72 6f 75 74 69 | 6e 65 73 2e 20 0d 09 09 |he routi|nes. ...| |000006e0| 09 4d 61 64 65 20 73 75 | 72 65 20 74 68 61 74 20 |.Made su|re that | |000006f0| 64 6f 6d 61 69 6e 20 65 | 72 72 6f 72 20 70 72 6f |domain e|rror pro| |00000700| 64 75 63 65 73 20 4e 41 | 4e 2e 0d 36 2f 39 30 09 |duces NA|N..6/90.| |00000710| 64 67 70 09 61 64 64 65 | 64 20 4e 6f 72 6d 61 6c |dgp.adde|d Normal| |00000720| 53 61 6d 70 6c 65 28 29 | 0d 37 2f 33 30 2f 39 31 |Sample()|.7/30/91| |00000730| 09 64 67 70 09 6e 6f 77 | 20 75 73 65 20 4e 41 4e |.dgp.now| use NAN| |00000740| 20 64 65 66 69 6e 65 64 | 20 69 6e 20 56 69 64 65 | defined| in Vide| |00000750| 6f 54 6f 6f 6c 62 6f 78 | 2e 68 0d 31 32 2f 32 38 |oToolbox|.h.12/28| |00000760| 2f 39 31 20 64 67 70 20 | 73 70 65 64 20 75 70 20 |/91 dgp |sped up | |00000770| 4e 6f 72 6d 61 6c 50 64 | 66 28 29 20 62 79 20 63 |NormalPd|f() by c| |00000780| 61 6c 63 75 6c 61 74 69 | 6e 67 20 74 68 65 20 73 |alculati|ng the s| |00000790| 63 61 6c 65 20 66 61 63 | 74 6f 72 20 6f 6e 6c 79 |cale fac|tor only| |000007a0| 20 6f 6e 63 65 0d 31 32 | 2f 32 39 2f 39 31 20 64 | once.12|/29/91 d| |000007b0| 67 70 20 65 78 74 72 61 | 63 74 65 64 20 63 6f 64 |gp extra|cted cod| |000007c0| 65 20 74 6f 20 63 72 65 | 61 74 65 20 6e 65 77 20 |e to cre|ate new | |000007d0| 72 6f 75 74 69 6e 65 20 | 55 6e 69 66 6f 72 6d 53 |routine |UniformS| |000007e0| 61 6d 70 6c 65 2e 63 0d | 31 2f 31 31 2f 39 32 09 |ample.c.|1/11/92.| |000007f0| 64 67 70 09 72 65 77 72 | 6f 74 65 20 4e 6f 72 6d |dgp.rewr|ote Norm| |00000800| 61 6c 28 29 27 73 20 70 | 6f 6c 79 6e 6f 6d 69 61 |al()'s p|olynomia| |00000810| 6c 20 65 76 61 6c 75 61 | 74 69 6f 6e 20 74 6f 20 |l evalua|tion to | |00000820| 68 61 6c 76 65 20 74 68 | 65 20 6e 75 6d 62 65 72 |halve th|e number| |00000830| 20 6f 66 20 6d 75 6c 74 | 69 70 6c 69 65 73 0d 09 | of mult|iplies..| |00000840| 09 09 52 65 6e 61 6d 65 | 64 20 4e 6f 72 6d 61 6c |..Rename|d Normal| |00000850| 50 44 46 28 29 20 74 6f | 20 4e 6f 72 6d 61 6c 50 |PDF() to| NormalP| |00000860| 64 66 28 29 2e 0d 31 2f | 31 39 2f 39 32 09 64 67 |df()..1/|19/92.dg| |00000870| 70 09 64 65 66 69 6e 65 | 64 20 74 68 65 20 63 6f |p.define|d the co| |00000880| 6e 73 74 61 6e 74 73 20 | 4c 4f 47 32 20 61 6e 64 |nstants |LOG2 and| |00000890| 20 4c 4f 47 50 49 20 69 | 6e 20 56 69 64 65 6f 54 | LOGPI i|n VideoT| |000008a0| 6f 6f 6c 62 6f 78 2e 68 | 0d 09 09 09 41 64 64 65 |oolbox.h|....Adde| |000008b0| 64 20 6d 6f 72 65 20 64 | 6f 6d 61 69 6e 20 74 65 |d more d|omain te| |000008c0| 73 74 73 2c 20 72 65 74 | 75 72 6e 69 6e 67 20 4e |sts, ret|urning N| |000008d0| 41 4e 20 69 66 20 6f 75 | 74 73 69 64 65 2e 20 0d |AN if ou|tside. .| |000008e0| 09 09 09 41 64 64 65 64 | 20 6d 6f 72 65 20 63 68 |...Added| more ch| |000008f0| 65 63 6b 73 20 74 6f 20 | 6d 61 69 6e 28 29 2e 0d |ecks to |main()..| |00000900| 09 09 09 57 72 6f 74 65 | 20 4e 6f 72 6d 61 6c 32 |...Wrote| Normal2| |00000910| 44 50 64 66 28 29 2c 4e | 6f 72 6d 61 6c 32 44 28 |DPdf(),N|ormal2D(| |00000920| 29 2c 49 6e 76 65 72 73 | 65 4e 6f 72 6d 61 6c 32 |),Invers|eNormal2| |00000930| 44 28 29 2c 61 6e 64 20 | 4e 6f 72 6d 61 6c 32 44 |D(),and |Normal2D| |00000940| 53 61 6d 70 6c 65 28 29 | 2e 0d 32 2f 31 2f 39 32 |Sample()|..2/1/92| |00000950| 09 64 67 70 09 52 65 64 | 65 66 69 6e 65 64 20 4e |.dgp.Red|efined N| |00000960| 6f 72 6d 61 6c 32 44 50 | 64 66 28 72 29 20 74 6f |ormal2DP|df(r) to| |00000970| 20 6e 6f 77 2c 20 6d 6f | 72 65 20 73 65 6e 73 69 | now, mo|re sensi| |00000980| 62 6c 79 2c 20 74 72 65 | 61 74 20 72 20 61 73 20 |bly, tre|at r as | |00000990| 74 68 65 20 72 61 6e 64 | 6f 6d 0d 09 09 09 76 61 |the rand|om....va| |000009a0| 72 69 61 62 6c 65 2c 20 | 72 61 74 68 65 72 20 74 |riable, |rather t| |000009b0| 68 61 6e 20 74 68 65 20 | 69 6d 70 6c 69 63 69 74 |han the |implicit| |000009c0| 20 78 20 61 6e 64 20 79 | 2c 20 77 68 65 72 65 20 | x and y|, where | |000009d0| 72 3d 73 71 72 74 28 78 | 5e 32 2b 79 5e 32 29 2e |r=sqrt(x|^2+y^2).| |000009e0| 20 0d 09 09 09 50 72 65 | 76 69 6f 75 73 6c 79 2c | ....Pre|viously,| |000009f0| 20 4e 6f 72 6d 61 6c 32 | 44 28 52 29 3d 49 6e 74 | Normal2|D(R)=Int| |00000a00| 65 67 72 61 74 65 5b 32 | 20 50 69 20 72 20 4e 6f |egrate[2| Pi r No| |00000a10| 72 6d 61 6c 32 44 50 64 | 66 28 72 29 2c 7b 72 2c |rmal2DPd|f(r),{r,| |00000a20| 30 2c 52 7d 5d 0d 09 09 | 09 6e 6f 77 20 4e 6f 72 |0,R}]...|.now Nor| |00000a30| 6d 61 6c 32 44 28 52 29 | 3d 49 6e 74 65 67 72 61 |mal2D(R)|=Integra| |00000a40| 74 65 5b 4e 6f 72 6d 61 | 6c 32 44 50 64 66 28 72 |te[Norma|l2DPdf(r| |00000a50| 29 2c 7b 72 2c 30 2c 52 | 7d 5d 2e 20 54 68 65 72 |),{r,0,R|}]. Ther| |00000a60| 65 20 69 73 20 6e 6f 20 | 63 68 61 6e 67 65 0d 09 |e is no |change..| |00000a70| 09 09 69 6e 20 4e 6f 72 | 6d 61 6c 32 44 28 29 2e |..in Nor|mal2D().| |00000a80| 20 49 20 73 75 73 70 65 | 63 74 20 74 68 61 74 20 | I suspe|ct that | |00000a90| 4e 6f 72 6d 61 6c 32 44 | 20 69 73 20 69 6e 20 66 |Normal2D| is in f| |00000aa0| 61 63 74 20 74 68 65 20 | 52 61 6c 65 69 67 68 20 |act the |Raleigh | |00000ab0| 64 69 73 74 72 69 62 75 | 74 69 6f 6e 2c 0d 09 09 |distribu|tion,...| |00000ac0| 09 61 6e 64 20 49 20 77 | 69 6c 6c 20 72 65 6e 61 |.and I w|ill rena| |00000ad0| 6d 65 20 69 74 20 69 66 | 20 74 68 69 73 20 69 73 |me it if| this is| |00000ae0| 20 69 6e 20 66 61 63 74 | 20 74 68 65 20 63 61 73 | in fact| the cas| |00000af0| 65 2e 0d 31 31 2f 31 33 | 2f 39 32 20 64 67 70 20 |e..11/13|/92 dgp | |00000b00| 49 6e 76 65 72 73 65 4e | 6f 72 6d 61 6c 28 30 29 |InverseN|ormal(0)| |00000b10| 20 6e 6f 77 20 72 65 74 | 75 72 6e 73 20 2d 49 4e | now ret|urns -IN| |00000b20| 46 2c 20 61 6e 64 20 49 | 6e 76 65 72 73 65 4e 6f |F, and I|nverseNo| |00000b30| 72 6d 61 6c 28 31 29 20 | 72 65 74 75 72 6e 73 20 |rmal(1) |returns | |00000b40| 49 4e 46 2e 0d 31 32 2f | 31 35 2f 39 33 20 64 67 |INF..12/|15/93 dg| |00000b50| 70 20 64 65 63 6c 61 72 | 65 64 20 73 6f 6d 65 20 |p declar|ed some | |00000b60| 61 72 67 75 6d 65 6e 74 | 73 20 22 72 65 67 69 73 |argument|s "regis| |00000b70| 74 65 72 22 2e 0d 33 2f | 32 36 2f 39 34 09 64 67 |ter"..3/|26/94.dg| |00000b80| 70 09 61 64 64 65 64 20 | 42 6f 75 6e 64 65 64 4e |p.added |BoundedN| |00000b90| 6f 72 6d 61 6c 49 6e 74 | 65 67 65 72 73 28 29 2e |ormalInt|egers().| |00000ba0| 0d 09 09 09 41 73 6b 65 | 64 20 63 6f 6d 70 69 6c |....Aske|d compil| |00000bb0| 65 72 20 74 6f 20 75 73 | 65 20 36 38 38 38 31 20 |er to us|e 68881 | |00000bc0| 69 6e 73 74 72 75 63 74 | 69 6f 6e 73 20 66 6f 72 |instruct|ions for| |00000bd0| 20 74 72 61 6e 73 63 65 | 6e 64 65 6e 74 61 6c 73 | transce|ndentals| |00000be0| 2e 0d 2a 2f 0d 23 69 6e | 63 6c 75 64 65 20 22 56 |..*/.#in|clude "V| |00000bf0| 69 64 65 6f 54 6f 6f 6c | 62 6f 78 2e 68 22 0d 23 |ideoTool|box.h".#| |00000c00| 69 6e 63 6c 75 64 65 20 | 3c 61 73 73 65 72 74 2e |include |<assert.| |00000c10| 68 3e 0d 23 69 6e 63 6c | 75 64 65 20 3c 6d 61 74 |h>.#incl|ude <mat| |00000c20| 68 2e 68 3e 0d 23 69 6e | 63 6c 75 64 65 20 22 6d |h.h>.#in|clude "m| |00000c30| 63 36 38 38 38 31 2e 68 | 22 0d 76 6f 69 64 20 42 |c68881.h|".void B| |00000c40| 6f 75 6e 64 65 64 4e 6f | 72 6d 61 6c 49 6e 74 65 |oundedNo|rmalInte| |00000c50| 67 65 72 73 28 73 68 6f | 72 74 20 2a 64 69 73 74 |gers(sho|rt *dist| |00000c60| 72 69 62 75 74 69 6f 6e | 2c 6c 6f 6e 67 20 6e 2c |ribution|,long n,| |00000c70| 64 6f 75 62 6c 65 20 6d | 65 61 6e 2c 64 6f 75 62 |double m|ean,doub| |00000c80| 6c 65 20 73 64 0d 09 2c | 73 68 6f 72 74 20 6d 69 |le sd..,|short mi| |00000c90| 6e 2c 73 68 6f 72 74 20 | 6d 61 78 29 3b 0d 23 69 |n,short |max);.#i| |00000ca0| 66 20 54 48 49 4e 4b 5f | 43 20 26 26 20 6d 63 36 |f THINK_|C && mc6| |00000cb0| 38 38 38 31 0d 09 23 64 | 65 66 69 6e 65 20 65 78 |8881..#d|efine ex| |00000cc0| 70 20 5f 65 78 70 09 2f | 2a 20 75 73 65 20 66 61 |p _exp./|* use fa| |00000cd0| 73 74 20 36 38 38 38 31 | 20 69 6e 73 74 72 75 63 |st 68881| instruc| |00000ce0| 74 69 6f 6e 20 69 6e 73 | 74 65 61 64 20 6f 66 20 |tion ins|tead of | |00000cf0| 53 41 4e 45 20 2a 2f 0d | 09 23 64 65 66 69 6e 65 |SANE */.|.#define| |00000d00| 20 6c 6f 67 20 5f 6c 6f | 67 09 2f 2a 20 75 73 65 | log _lo|g./* use| |00000d10| 20 66 61 73 74 20 36 38 | 38 38 31 20 69 6e 73 74 | fast 68|881 inst| |00000d20| 72 75 63 74 69 6f 6e 20 | 69 6e 73 74 65 61 64 20 |ruction |instead | |00000d30| 6f 66 20 53 41 4e 45 20 | 2a 2f 0d 09 23 64 65 66 |of SANE |*/..#def| |00000d40| 69 6e 65 20 73 71 72 74 | 20 5f 73 71 72 74 09 2f |ine sqrt| _sqrt./| |00000d50| 2a 20 75 73 65 20 66 61 | 73 74 20 36 38 38 38 31 |* use fa|st 68881| |00000d60| 20 69 6e 73 74 72 75 63 | 74 69 6f 6e 20 69 6e 73 | instruc|tion ins| |00000d70| 74 65 61 64 20 6f 66 20 | 53 41 4e 45 20 2a 2f 0d |tead of |SANE */.| |00000d80| 23 65 6e 64 69 66 0d 0d | 64 6f 75 62 6c 65 20 4e |#endif..|double N| |00000d90| 6f 72 6d 61 6c 50 64 66 | 28 72 65 67 69 73 74 65 |ormalPdf|(registe| |00000da0| 72 20 64 6f 75 62 6c 65 | 20 78 29 0d 2f 2a 20 47 |r double| x)./* G| |00000db0| 61 75 73 73 69 61 6e 20 | 70 64 66 2e 20 5a 65 72 |aussian |pdf. Zer| |00000dc0| 6f 20 6d 65 61 6e 20 61 | 6e 64 20 75 6e 69 74 20 |o mean a|nd unit | |00000dd0| 76 61 72 69 61 6e 63 65 | 2e 20 2a 2f 0d 7b 0d 09 |variance|. */.{..| |00000de0| 69 66 28 49 73 4e 61 6e | 28 78 29 29 72 65 74 75 |if(IsNan|(x))retu| |00000df0| 72 6e 20 78 3b 0d 09 72 | 65 74 75 72 6e 20 65 78 |rn x;..r|eturn ex| |00000e00| 70 28 2d 30 2e 35 2a 28 | 78 2a 78 2b 28 4c 4f 47 |p(-0.5*(|x*x+(LOG| |00000e10| 32 2b 4c 4f 47 50 49 29 | 29 29 3b 0d 7d 0d 0d 64 |2+LOGPI)|));.}..d| |00000e20| 6f 75 62 6c 65 20 4e 6f | 72 6d 61 6c 28 72 65 67 |ouble No|rmal(reg| |00000e30| 69 73 74 65 72 20 64 6f | 75 62 6c 65 20 78 29 0d |ister do|uble x).| |00000e40| 2f 2a 0d 43 75 6d 75 6c | 61 74 69 76 65 20 6e 6f |/*.Cumul|ative no| |00000e50| 72 6d 61 6c 20 64 69 73 | 74 72 69 62 75 74 69 6f |rmal dis|tributio| |00000e60| 6e 2e 20 46 72 6f 6d 20 | 41 62 72 61 6d 6f 77 69 |n. From |Abramowi| |00000e70| 74 7a 20 61 6e 64 20 53 | 74 65 67 75 6e 20 45 71 |tz and S|tegun Eq| |00000e80| 2e 20 28 32 36 2e 32 2e | 31 37 29 2e 0d 45 72 72 |. (26.2.|17)..Err| |00000e90| 6f 72 20 7c 65 7c 3c 37 | 2e 35 20 31 30 5e 2d 38 |or |e|<7|.5 10^-8| |00000ea0| 0d 2a 2f 0d 7b 0d 09 72 | 65 67 69 73 74 65 72 20 |.*/.{..r|egister | |00000eb0| 64 6f 75 62 6c 65 20 50 | 2c 74 3b 0d 09 0d 09 69 |double P|,t;....i| |00000ec0| 66 28 78 3c 30 2e 30 29 | 20 72 65 74 75 72 6e 20 |f(x<0.0)| return | |00000ed0| 31 2e 30 2d 4e 6f 72 6d | 61 6c 28 2d 78 29 3b 0d |1.0-Norm|al(-x);.| |00000ee0| 09 74 3d 31 2e 30 2f 28 | 31 2e 30 2b 30 2e 32 33 |.t=1.0/(|1.0+0.23| |00000ef0| 31 36 34 31 39 2a 78 29 | 3b 0d 09 50 3d 28 30 2e |16419*x)|;..P=(0.| |00000f00| 33 31 39 33 38 31 35 33 | 30 2b 28 2d 30 2e 33 35 |31938153|0+(-0.35| |00000f10| 36 35 36 33 37 38 32 2b | 28 31 2e 37 38 31 34 37 |6563782+|(1.78147| |00000f20| 37 39 33 37 2b 28 2d 31 | 2e 38 32 31 32 35 35 39 |7937+(-1|.8212559| |00000f30| 37 38 2b 31 2e 33 33 30 | 32 37 34 34 32 39 2a 74 |78+1.330|274429*t| |00000f40| 29 2a 74 29 2a 74 29 2a | 74 29 2a 74 3b 0d 09 72 |)*t)*t)*|t)*t;..r| |00000f50| 65 74 75 72 6e 20 31 2e | 30 2d 4e 6f 72 6d 61 6c |eturn 1.|0-Normal| |00000f60| 50 64 66 28 78 29 2a 50 | 3b 0d 7d 0d 0d 64 6f 75 |Pdf(x)*P|;.}..dou| |00000f70| 62 6c 65 20 49 6e 76 65 | 72 73 65 4e 6f 72 6d 61 |ble Inve|rseNorma| |00000f80| 6c 28 72 65 67 69 73 74 | 65 72 20 64 6f 75 62 6c |l(regist|er doubl| |00000f90| 65 20 70 29 0d 2f 2a 0d | 49 6e 76 65 72 73 65 20 |e p)./*.|Inverse | |00000fa0| 6f 66 20 4e 6f 72 6d 61 | 6c 28 29 2c 20 62 61 73 |of Norma|l(), bas| |00000fb0| 65 64 20 6f 6e 20 41 62 | 72 61 6d 6f 77 69 74 7a |ed on Ab|ramowitz| |00000fc0| 20 61 6e 64 20 53 74 65 | 67 75 6e 20 45 71 2e 20 | and Ste|gun Eq. | |00000fd0| 32 36 2e 32 2e 32 33 2e | 0d 45 72 72 6f 72 20 7c |26.2.23.|.Error || |00000fe0| 65 7c 3c 34 2e 35 20 31 | 30 5e 2d 34 2e 0d 2a 2f |e|<4.5 1|0^-4..*/| |00000ff0| 0d 7b 0d 09 72 65 67 69 | 73 74 65 72 20 64 6f 75 |.{..regi|ster dou| |00001000| 62 6c 65 20 74 2c 78 3b | 0d 09 0d 09 69 66 28 49 |ble t,x;|....if(I| |00001010| 73 4e 61 6e 28 70 29 29 | 72 65 74 75 72 6e 20 70 |sNan(p))|return p| |00001020| 3b 0d 09 69 66 28 70 3c | 30 2e 30 29 72 65 74 75 |;..if(p<|0.0)retu| |00001030| 72 6e 20 4e 41 4e 3b 0d | 09 69 66 28 70 3d 3d 30 |rn NAN;.|.if(p==0| |00001040| 2e 30 29 72 65 74 75 72 | 6e 20 2d 49 4e 46 3b 0d |.0)retur|n -INF;.| |00001050| 09 69 66 28 70 3e 30 2e | 35 29 20 72 65 74 75 72 |.if(p>0.|5) retur| |00001060| 6e 20 2d 49 6e 76 65 72 | 73 65 4e 6f 72 6d 61 6c |n -Inver|seNormal| |00001070| 28 31 2e 30 2d 70 29 3b | 0d 09 74 3d 73 71 72 74 |(1.0-p);|..t=sqrt| |00001080| 28 2d 32 2e 30 2a 6c 6f | 67 28 70 29 29 3b 0d 09 |(-2.0*lo|g(p));..| |00001090| 78 3d 74 2d 28 32 2e 35 | 31 35 35 31 37 2b 28 30 |x=t-(2.5|15517+(0| |000010a0| 2e 38 30 32 38 35 33 2b | 30 2e 30 31 30 33 32 38 |.802853+|0.010328| |000010b0| 2a 74 29 2a 74 29 2f 28 | 31 2e 30 2b 28 31 2e 34 |*t)*t)/(|1.0+(1.4| |000010c0| 33 32 37 38 38 2b 28 30 | 2e 31 38 39 32 36 39 2b |32788+(0|.189269+| |000010d0| 30 2e 30 30 31 33 30 38 | 2a 74 29 2a 74 29 2a 74 |0.001308|*t)*t)*t| |000010e0| 29 3b 0d 09 72 65 74 75 | 72 6e 20 2d 78 3b 0d 7d |);..retu|rn -x;.}| |000010f0| 0d 0d 64 6f 75 62 6c 65 | 20 4e 6f 72 6d 61 6c 53 |..double| NormalS| |00001100| 61 6d 70 6c 65 28 76 6f | 69 64 29 0d 7b 0d 09 72 |ample(vo|id).{..r| |00001110| 65 74 75 72 6e 20 49 6e | 76 65 72 73 65 4e 6f 72 |eturn In|verseNor| |00001120| 6d 61 6c 28 55 6e 69 66 | 6f 72 6d 53 61 6d 70 6c |mal(Unif|ormSampl| |00001130| 65 28 29 29 3b 0d 7d 0d | 0d 64 6f 75 62 6c 65 20 |e());.}.|.double | |00001140| 4e 6f 72 6d 61 6c 32 44 | 50 64 66 28 64 6f 75 62 |Normal2D|Pdf(doub| |00001150| 6c 65 20 72 29 0d 2f 2a | 20 47 61 75 73 73 69 61 |le r)./*| Gaussia| |00001160| 6e 20 70 64 66 20 6f 76 | 65 72 20 74 77 6f 20 64 |n pdf ov|er two d| |00001170| 69 6d 65 6e 73 69 6f 6e | 73 2c 20 69 6e 74 65 67 |imension|s, integ| |00001180| 72 61 74 65 64 20 6f 76 | 65 72 20 61 6c 6c 20 6f |rated ov|er all o| |00001190| 72 69 65 6e 74 61 74 69 | 6f 6e 73 2c 20 30 20 74 |rientati|ons, 0 t| |000011a0| 6f 20 32 b9 2e 20 2a 2f | 0d 2f 2a 20 54 68 65 20 |o 2.. */|./* The | |000011b0| 61 72 67 75 6d 65 6e 74 | 20 69 73 20 74 61 6b 65 |argument| is take| |000011c0| 6e 20 74 6f 20 62 65 20 | 74 68 65 20 64 69 73 74 |n to be |the dist| |000011d0| 61 6e 63 65 20 66 72 6f | 6d 20 74 68 65 20 6f 72 |ance fro|m the or| |000011e0| 69 67 69 6e 2c 20 5b 30 | 2c 49 6e 66 5d 2e 20 2a |igin, [0|,Inf]. *| |000011f0| 2f 0d 2f 2a 20 54 68 65 | 20 72 6d 73 20 69 73 20 |/./* The| rms is | |00001200| 31 20 2a 2f 0d 7b 0d 09 | 69 66 28 49 73 4e 61 6e |1 */.{..|if(IsNan| |00001210| 28 72 29 29 72 65 74 75 | 72 6e 20 72 3b 0d 09 69 |(r))retu|rn r;..i| |00001220| 66 28 72 3c 3d 30 2e 30 | 29 72 65 74 75 72 6e 20 |f(r<=0.0|)return | |00001230| 30 2e 30 3b 0d 09 72 65 | 74 75 72 6e 20 32 2a 72 |0.0;..re|turn 2*r| |00001240| 2a 65 78 70 28 2d 72 2a | 72 29 3b 0d 7d 0d 0d 64 |*exp(-r*|r);.}..d| |00001250| 6f 75 62 6c 65 20 4e 6f | 72 6d 61 6c 32 44 28 64 |ouble No|rmal2D(d| |00001260| 6f 75 62 6c 65 20 72 29 | 0d 2f 2a 20 49 6e 74 65 |ouble r)|./* Inte| |00001270| 67 72 61 6c 20 6f 66 20 | 4e 6f 72 6d 61 6c 32 44 |gral of |Normal2D| |00001280| 50 64 66 28 29 20 66 72 | 6f 6d 20 7a 65 72 6f 20 |Pdf() fr|om zero | |00001290| 74 6f 20 72 2e 20 2a 2f | 0d 7b 0d 09 69 66 28 49 |to r. */|.{..if(I| |000012a0| 73 4e 61 6e 28 72 29 29 | 72 65 74 75 72 6e 20 72 |sNan(r))|return r| |000012b0| 3b 0d 09 69 66 28 72 3c | 3d 30 2e 30 29 72 65 74 |;..if(r<|=0.0)ret| |000012c0| 75 72 6e 20 30 2e 30 3b | 0d 09 72 65 74 75 72 6e |urn 0.0;|..return| |000012d0| 20 31 2e 30 2d 65 78 70 | 28 2d 72 2a 72 29 3b 0d | 1.0-exp|(-r*r);.| |000012e0| 7d 0d 0d 64 6f 75 62 6c | 65 20 49 6e 76 65 72 73 |}..doubl|e Invers| |000012f0| 65 4e 6f 72 6d 61 6c 32 | 44 28 64 6f 75 62 6c 65 |eNormal2|D(double| |00001300| 20 70 29 0d 7b 0d 09 69 | 66 28 49 73 4e 61 6e 28 | p).{..i|f(IsNan(| |00001310| 70 29 29 72 65 74 75 72 | 6e 20 70 3b 0d 09 69 66 |p))retur|n p;..if| |00001320| 28 70 3c 30 2e 30 20 7c | 7c 20 70 3e 31 2e 30 29 |(p<0.0 ||| p>1.0)| |00001330| 72 65 74 75 72 6e 20 4e | 41 4e 3b 0d 09 72 65 74 |return N|AN;..ret| |00001340| 75 72 6e 20 73 71 72 74 | 28 2d 6c 6f 67 28 31 2e |urn sqrt|(-log(1.| |00001350| 30 2d 70 29 29 3b 0d 7d | 0d 0d 64 6f 75 62 6c 65 |0-p));.}|..double| |00001360| 20 4e 6f 72 6d 61 6c 32 | 44 53 61 6d 70 6c 65 28 | Normal2|DSample(| |00001370| 76 6f 69 64 29 0d 2f 2a | 20 72 6d 73 20 69 73 20 |void)./*| rms is | |00001380| 31 20 2a 2f 0d 7b 0d 09 | 72 65 74 75 72 6e 20 49 |1 */.{..|return I| |00001390| 6e 76 65 72 73 65 4e 6f | 72 6d 61 6c 32 44 28 55 |nverseNo|rmal2D(U| |000013a0| 6e 69 66 6f 72 6d 53 61 | 6d 70 6c 65 28 29 29 3b |niformSa|mple());| |000013b0| 0d 7d 0d 0d 2f 2a 0d 09 | 49 6e 74 65 67 72 61 74 |.}../*..|Integrat| |000013c0| 65 5b 65 78 70 28 2d 2e | 35 2a 75 5e 32 29 2c 7b |e[exp(-.|5*u^2),{| |000013d0| 75 2c 61 2c 61 2b 31 2f | 73 64 7d 5d 0d 09 3d 65 |u,a,a+1/|sd}]..=e| |000013e0| 78 70 28 2d 2e 35 2a 61 | 5e 32 29 2a 49 6e 74 65 |xp(-.5*a|^2)*Inte| |000013f0| 67 72 61 74 65 5b 65 78 | 70 28 2d 2e 35 2a 28 28 |grate[ex|p(-.5*((| |00001400| 61 2b 65 29 5e 32 2d 61 | 5e 32 29 29 2c 7b 65 2c |a+e)^2-a|^2)),{e,| |00001410| 30 2c 31 2f 73 64 7d 5d | 0d 09 3d 65 78 70 28 2d |0,1/sd}]|..=exp(-| |00001420| 2e 35 2a 61 5e 32 29 2a | 49 6e 74 65 67 72 61 74 |.5*a^2)*|Integrat| |00001430| 65 5b 65 78 70 28 2d 2e | 35 2a 65 2a 65 29 2a 65 |e[exp(-.|5*e*e)*e| |00001440| 78 70 28 2d 61 2a 65 29 | 2c 7b 65 2c 30 2c 31 2f |xp(-a*e)|,{e,0,1/| |00001450| 73 64 7d 5d 0d 09 3d 65 | 78 70 28 2d 2e 35 2a 61 |sd}]..=e|xp(-.5*a| |00001460| 5e 32 29 2a 49 6e 74 65 | 67 72 61 74 65 5b 28 31 |^2)*Inte|grate[(1| |00001470| 2d 2e 35 2a 65 2a 65 29 | 2a 65 78 70 28 2d 61 2a |-.5*e*e)|*exp(-a*| |00001480| 65 29 2c 7b 65 2c 30 2c | 31 2f 73 64 7d 5d 0d 09 |e),{e,0,|1/sd}]..| |00001490| 3d 65 78 70 28 2d 2e 35 | 2a 61 5e 32 29 2a 28 28 |=exp(-.5|*a^2)*((| |000014a0| 65 78 70 28 2d 61 2f 73 | 64 29 20 2d 20 31 29 2f |exp(-a/s|d) - 1)/| |000014b0| 28 2d 61 29 2d 2e 35 2a | 49 6e 74 65 67 72 61 74 |(-a)-.5*|Integrat| |000014c0| 65 5b 65 2a 65 2a 65 78 | 70 28 2d 61 2a 65 29 2c |e[e*e*ex|p(-a*e),| |000014d0| 7b 65 2c 30 2c 31 2f 73 | 64 7d 5d 29 0d 09 3d 65 |{e,0,1/s|d}])..=e| |000014e0| 78 70 28 2d 2e 35 2a 61 | 5e 32 29 2a 28 31 2d 65 |xp(-.5*a|^2)*(1-e| |000014f0| 78 70 28 2d 61 2f 73 64 | 29 29 2f 61 0d 2a 2f 0d |xp(-a/sd|))/a.*/.| |00001500| 76 6f 69 64 20 42 6f 75 | 6e 64 65 64 4e 6f 72 6d |void Bou|ndedNorm| |00001510| 61 6c 49 6e 74 65 67 65 | 72 73 28 72 65 67 69 73 |alIntege|rs(regis| |00001520| 74 65 72 20 73 68 6f 72 | 74 20 2a 64 69 73 74 72 |ter shor|t *distr| |00001530| 69 62 75 74 69 6f 6e 2c | 6c 6f 6e 67 20 6e 2c 64 |ibution,|long n,d| |00001540| 6f 75 62 6c 65 20 6d 65 | 61 6e 2c 64 6f 75 62 6c |ouble me|an,doubl| |00001550| 65 20 73 64 0d 09 2c 73 | 68 6f 72 74 20 6d 69 6e |e sd..,s|hort min| |00001560| 2c 73 68 6f 72 74 20 6d | 61 78 29 0d 7b 0d 09 72 |,short m|ax).{..r| |00001570| 65 67 69 73 74 65 72 20 | 73 68 6f 72 74 20 69 3b |egister |short i;| |00001580| 0d 09 72 65 67 69 73 74 | 65 72 20 6c 6f 6e 67 20 |..regist|er long | |00001590| 6a 2c 63 6f 75 6e 74 2c | 76 61 6c 75 65 73 2c 72 |j,count,|values,r| |000015a0| 6f 75 6e 64 3b 0d 09 64 | 6f 75 62 6c 65 20 70 2c |ound;..d|ouble p,| |000015b0| 70 30 2c 70 31 2c 78 3b | 0d 09 73 68 6f 72 74 20 |p0,p1,x;|..short | |000015c0| 73 68 6f 72 74 63 75 74 | 3b 0d 09 0d 09 6a 3d 30 |shortcut|;....j=0| |000015d0| 3b 0d 09 69 66 28 49 73 | 49 6e 66 28 73 64 29 29 |;..if(Is|Inf(sd))| |000015e0| 7b 0d 09 09 2f 2f 20 55 | 6e 69 66 6f 72 6d 20 64 |{...// U|niform d| |000015f0| 69 73 74 72 69 62 75 74 | 69 6f 6e 20 6f 76 65 72 |istribut|ion over| |00001600| 20 74 68 65 20 69 6e 74 | 65 72 76 61 6c 20 5b 6d | the int|erval [m| |00001610| 69 6e 2c 6d 61 78 5d 0d | 09 09 76 61 6c 75 65 73 |in,max].|..values| |00001620| 3d 6d 61 78 2d 6d 69 6e | 2b 31 3b 0d 09 09 61 73 |=max-min|+1;...as| |00001630| 73 65 72 74 28 6e 3c 4c | 4f 4e 47 5f 4d 41 58 2f |sert(n<L|ONG_MAX/| |00001640| 76 61 6c 75 65 73 29 3b | 0d 09 09 72 6f 75 6e 64 |values);|...round| |00001650| 3d 76 61 6c 75 65 73 2f | 32 3b 0d 09 09 66 6f 72 |=values/|2;...for| |00001660| 28 69 3d 6d 69 6e 3b 69 | 3c 6d 61 78 3b 69 2b 2b |(i=min;i|<max;i++| |00001670| 29 7b 0d 09 09 09 63 6f | 75 6e 74 3d 28 28 69 2d |){....co|unt=((i-| |00001680| 6d 69 6e 2b 31 29 2a 6e | 2b 72 6f 75 6e 64 29 2f |min+1)*n|+round)/| |00001690| 76 61 6c 75 65 73 3b 0d | 09 09 09 77 68 69 6c 65 |values;.|...while| |000016a0| 28 6a 3c 63 6f 75 6e 74 | 29 64 69 73 74 72 69 62 |(j<count|)distrib| |000016b0| 75 74 69 6f 6e 5b 6a 2b | 2b 5d 3d 69 3b 0d 09 09 |ution[j+|+]=i;...| |000016c0| 7d 0d 09 7d 65 6c 73 65 | 7b 09 0d 09 09 73 68 6f |}..}else|{....sho| |000016d0| 72 74 63 75 74 3d 73 64 | 2a 73 64 3e 6e 3b 09 2f |rtcut=sd|*sd>n;./| |000016e0| 2f 20 67 75 61 72 61 6e | 74 65 65 73 20 63 6f 75 |/ guaran|tees cou| |000016f0| 6e 74 20 77 69 6c 6c 20 | 65 72 72 20 62 79 20 61 |nt will |err by a| |00001700| 74 20 6d 6f 73 74 20 b1 | 30 2e 35 0d 09 09 70 3d |t most .|0.5...p=| |00001710| 70 30 3d 4e 6f 72 6d 61 | 6c 28 28 6d 69 6e 2d 2e |p0=Norma|l((min-.| |00001720| 35 2d 6d 65 61 6e 29 2f | 73 64 29 3b 0d 09 09 70 |5-mean)/|sd);...p| |00001730| 31 3d 4e 6f 72 6d 61 6c | 28 28 6d 61 78 2b 2e 35 |1=Normal|((max+.5| |00001740| 2d 6d 65 61 6e 29 2f 73 | 64 29 2d 70 30 3b 0d 09 |-mean)/s|d)-p0;..| |00001750| 09 66 6f 72 28 69 3d 6d | 69 6e 3b 69 3c 6d 61 78 |.for(i=m|in;i<max| |00001760| 3b 69 2b 2b 29 7b 0d 09 | 09 09 78 3d 28 69 2b 2e |;i++){..|..x=(i+.| |00001770| 35 2d 6d 65 61 6e 29 2f | 73 64 3b 0d 09 09 09 69 |5-mean)/|sd;....i| |00001780| 66 28 73 68 6f 72 74 63 | 75 74 29 70 2b 3d 4e 6f |f(shortc|ut)p+=No| |00001790| 72 6d 61 6c 50 64 66 28 | 78 29 2a 28 65 78 70 28 |rmalPdf(|x)*(exp(| |000017a0| 78 2f 73 64 29 2d 31 29 | 2f 78 3b 0d 09 09 09 65 |x/sd)-1)|/x;....e| |000017b0| 6c 73 65 20 70 3d 4e 6f | 72 6d 61 6c 28 78 29 3b |lse p=No|rmal(x);| |000017c0| 0d 09 09 09 63 6f 75 6e | 74 3d 30 2e 35 2b 6e 2a |....coun|t=0.5+n*| |000017d0| 28 70 2d 70 30 29 2f 70 | 31 3b 0d 09 09 09 77 68 |(p-p0)/p|1;....wh| |000017e0| 69 6c 65 28 6a 3c 63 6f | 75 6e 74 29 64 69 73 74 |ile(j<co|unt)dist| |000017f0| 72 69 62 75 74 69 6f 6e | 5b 6a 2b 2b 5d 3d 69 3b |ribution|[j++]=i;| |00001800| 0d 09 09 7d 0d 09 7d 0d | 09 77 68 69 6c 65 28 6a |...}..}.|.while(j| |00001810| 3c 6e 29 64 69 73 74 72 | 69 62 75 74 69 6f 6e 5b |<n)distr|ibution[| |00001820| 6a 2b 2b 5d 3d 6d 61 78 | 3b 0d 7d 0d 0d 0d 23 69 |j++]=max|;.}...#i| |00001830| 66 20 30 20 2f 2a 20 41 | 20 74 65 73 74 20 70 72 |f 0 /* A| test pr| |00001840| 6f 67 72 61 6d 2e 20 2a | 2f 0d 09 76 6f 69 64 20 |ogram. *|/..void | |00001850| 6d 61 69 6e 28 29 0d 09 | 7b 0d 09 09 64 6f 75 62 |main()..|{...doub| |00001860| 6c 65 20 78 2c 79 2c 73 | 75 6d 2c 64 78 2c 61 2c |le x,y,s|um,dx,a,| |00001870| 62 2c 6d 65 61 6e 2c 73 | 64 3b 0d 09 09 73 74 61 |b,mean,s|d;...sta| |00001880| 74 69 63 20 64 6f 75 62 | 6c 65 20 7a 5b 31 30 30 |tic doub|le z[100| |00001890| 30 5d 3b 0d 09 09 69 6e | 74 20 69 3b 0d 09 09 0d |0];...in|t i;....| |000018a0| 09 09 52 65 71 75 69 72 | 65 28 30 29 3b 0d 09 09 |..Requir|e(0);...| |000018b0| 73 72 61 6e 64 28 63 6c | 6f 63 6b 28 29 29 3b 0d |srand(cl|ock());.| |000018c0| 09 09 70 72 69 6e 74 66 | 28 22 25 34 73 25 31 35 |..printf|("%4s%15| |000018d0| 73 25 31 35 73 25 32 30 | 73 25 31 35 73 5c 6e 22 |s%15s%20|s%15s\n"| |000018e0| 2c 22 78 22 2c 22 4e 6f | 72 6d 61 6c 50 64 66 28 |,"x","No|rmalPdf(| |000018f0| 78 29 22 2c 22 4e 6f 72 | 6d 61 6c 28 78 29 22 2c |x)","Nor|mal(x)",| |00001900| 22 49 6e 76 65 72 73 65 | 4e 6f 72 6d 61 6c 22 2c |"Inverse|Normal",| |00001910| 22 45 72 72 6f 72 22 29 | 3b 0d 09 09 66 6f 72 28 |"Error")|;...for(| |00001920| 78 3d 2d 34 2e 30 3b 78 | 3c 3d 34 2e 30 3b 78 2b |x=-4.0;x|<=4.0;x+| |00001930| 3d 32 2e 30 29 7b 0d 09 | 09 09 70 72 69 6e 74 66 |=2.0){..|..printf| |00001940| 28 22 25 34 2e 31 66 25 | 31 35 2e 38 66 25 31 35 |("%4.1f%|15.8f%15| |00001950| 2e 38 66 25 32 30 2e 34 | 66 25 31 35 2e 34 66 5c |.8f%20.4|f%15.4f\| |00001960| 6e 22 2c 0d 09 09 09 78 | 2c 4e 6f 72 6d 61 6c 50 |n",....x|,NormalP| |00001970| 64 66 28 78 29 2c 4e 6f | 72 6d 61 6c 28 78 29 2c |df(x),No|rmal(x),| |00001980| 49 6e 76 65 72 73 65 4e | 6f 72 6d 61 6c 28 4e 6f |InverseN|ormal(No| |00001990| 72 6d 61 6c 28 78 29 29 | 2c 49 6e 76 65 72 73 65 |rmal(x))|,Inverse| |000019a0| 4e 6f 72 6d 61 6c 28 4e | 6f 72 6d 61 6c 28 78 29 |Normal(N|ormal(x)| |000019b0| 29 2d 78 29 3b 0d 09 09 | 7d 0d 09 09 73 75 6d 3d |)-x);...|}...sum=| |000019c0| 30 2e 30 3b 0d 09 09 64 | 78 3d 30 2e 30 30 31 3b |0.0;...d|x=0.001;| |000019d0| 0d 09 09 66 6f 72 28 78 | 3d 2d 31 2e 3b 78 3c 30 |...for(x|=-1.;x<0| |000019e0| 2e 3b 78 2b 3d 64 78 29 | 73 75 6d 2b 3d 4e 6f 72 |.;x+=dx)|sum+=Nor| |000019f0| 6d 61 6c 50 64 66 28 78 | 29 3b 0d 09 09 73 75 6d |malPdf(x|);...sum| |00001a00| 2a 3d 64 78 3b 0d 09 09 | 73 75 6d 2d 3d 4e 6f 72 |*=dx;...|sum-=Nor| |00001a10| 6d 61 6c 28 30 2e 30 29 | 2d 4e 6f 72 6d 61 6c 28 |mal(0.0)|-Normal(| |00001a20| 2d 31 2e 30 29 3b 0d 09 | 09 70 72 69 6e 74 66 28 |-1.0);..|.printf(| |00001a30| 22 50 61 72 74 69 61 6c | 20 69 6e 74 65 67 72 61 |"Partial| integra| |00001a40| 6c 20 6f 66 20 4e 6f 72 | 6d 61 6c 50 64 66 20 65 |l of Nor|malPdf e| |00001a50| 72 72 6f 72 20 25 2e 35 | 66 5c 6e 22 2c 73 75 6d |rror %.5|f\n",sum| |00001a60| 29 3b 0d 09 09 66 6f 72 | 28 69 3d 30 3b 69 3c 31 |);...for|(i=0;i<1| |00001a70| 30 30 30 3b 69 2b 2b 29 | 7a 5b 69 5d 3d 4e 6f 72 |000;i++)|z[i]=Nor| |00001a80| 6d 61 6c 53 61 6d 70 6c | 65 28 29 3b 0d 09 09 6d |malSampl|e();...m| |00001a90| 65 61 6e 3d 4d 65 61 6e | 28 7a 2c 31 30 30 30 2c |ean=Mean|(z,1000,| |00001aa0| 26 73 64 29 3b 0d 09 09 | 70 72 69 6e 74 66 28 22 |&sd);...|printf("| |00001ab0| 31 30 30 30 20 73 61 6d | 70 6c 65 73 20 6d 65 61 |1000 sam|ples mea| |00001ac0| 6e 20 25 2e 32 66 20 73 | 64 20 25 2e 32 66 5c 6e |n %.2f s|d %.2f\n| |00001ad0| 22 2c 6d 65 61 6e 2c 73 | 64 29 3b 0d 09 09 70 72 |",mean,s|d);...pr| |00001ae0| 69 6e 74 66 28 22 5c 6e | 22 29 3b 0d 09 0d 09 09 |intf("\n|");.....| |00001af0| 70 72 69 6e 74 66 28 22 | 25 34 73 25 31 35 73 25 |printf("|%4s%15s%| |00001b00| 31 35 73 25 32 30 73 25 | 31 35 73 5c 6e 22 2c 22 |15s%20s%|15s\n","| |00001b10| 78 22 2c 22 4e 6f 72 6d | 61 6c 32 44 50 64 66 28 |x","Norm|al2DPdf(| |00001b20| 78 29 22 2c 22 4e 6f 72 | 6d 61 6c 32 44 28 78 29 |x)","Nor|mal2D(x)| |00001b30| 22 2c 22 49 6e 76 65 72 | 73 65 4e 6f 72 6d 61 6c |","Inver|seNormal| |00001b40| 32 44 22 2c 22 45 72 72 | 6f 72 22 29 3b 0d 09 09 |2D","Err|or");...| |00001b50| 66 6f 72 28 78 3d 2d 31 | 2e 3b 78 3c 3d 35 2e 30 |for(x=-1|.;x<=5.0| |00001b60| 3b 78 2b 3d 31 2e 30 29 | 7b 0d 09 09 09 70 72 69 |;x+=1.0)|{....pri| |00001b70| 6e 74 66 28 22 25 34 2e | 31 66 25 31 35 2e 38 66 |ntf("%4.|1f%15.8f| |00001b80| 25 31 35 2e 38 66 25 32 | 30 2e 34 66 25 31 35 2e |%15.8f%2|0.4f%15.| |00001b90| 34 66 5c 6e 22 2c 0d 09 | 09 09 78 2c 4e 6f 72 6d |4f\n",..|..x,Norm| |00001ba0| 61 6c 32 44 50 64 66 28 | 78 29 2c 4e 6f 72 6d 61 |al2DPdf(|x),Norma| |00001bb0| 6c 32 44 28 78 29 2c 49 | 6e 76 65 72 73 65 4e 6f |l2D(x),I|nverseNo| |00001bc0| 72 6d 61 6c 32 44 28 4e | 6f 72 6d 61 6c 32 44 28 |rmal2D(N|ormal2D(| |00001bd0| 78 29 29 2c 49 6e 76 65 | 72 73 65 4e 6f 72 6d 61 |x)),Inve|rseNorma| |00001be0| 6c 32 44 28 4e 6f 72 6d | 61 6c 32 44 28 78 29 29 |l2D(Norm|al2D(x))| |00001bf0| 2d 78 29 3b 0d 09 09 7d | 0d 09 09 73 75 6d 3d 30 |-x);...}|...sum=0| |00001c00| 2e 30 3b 0d 09 09 64 78 | 3d 30 2e 30 30 30 31 3b |.0;...dx|=0.0001;| |00001c10| 0d 09 09 66 6f 72 28 78 | 3d 30 3b 78 3c 31 2e 3b |...for(x|=0;x<1.;| |00001c20| 78 2b 3d 64 78 29 73 75 | 6d 2b 3d 4e 6f 72 6d 61 |x+=dx)su|m+=Norma| |00001c30| 6c 32 44 50 64 66 28 78 | 29 3b 0d 09 09 73 75 6d |l2DPdf(x|);...sum| |00001c40| 2a 3d 64 78 3b 0d 09 09 | 73 75 6d 2d 3d 4e 6f 72 |*=dx;...|sum-=Nor| |00001c50| 6d 61 6c 32 44 28 31 2e | 30 29 3b 0d 09 09 70 72 |mal2D(1.|0);...pr| |00001c60| 69 6e 74 66 28 22 50 61 | 72 74 69 61 6c 20 69 6e |intf("Pa|rtial in| |00001c70| 74 65 67 72 61 6c 20 6f | 66 20 4e 6f 72 6d 61 6c |tegral o|f Normal| |00001c80| 32 44 50 64 66 20 65 72 | 72 6f 72 20 25 2e 35 66 |2DPdf er|ror %.5f| |00001c90| 5c 6e 22 2c 73 75 6d 29 | 3b 0d 09 09 66 6f 72 28 |\n",sum)|;...for(| |00001ca0| 69 3d 30 3b 69 3c 31 30 | 30 30 3b 69 2b 2b 29 7a |i=0;i<10|00;i++)z| |00001cb0| 5b 69 5d 3d 4e 6f 72 6d | 61 6c 32 44 53 61 6d 70 |[i]=Norm|al2DSamp| |00001cc0| 6c 65 28 29 3b 0d 09 09 | 6d 65 61 6e 3d 4d 65 61 |le();...|mean=Mea| |00001cd0| 6e 28 7a 2c 31 30 30 30 | 2c 26 73 64 29 3b 0d 09 |n(z,1000|,&sd);..| |00001ce0| 09 70 72 69 6e 74 66 28 | 22 31 30 30 30 20 73 61 |.printf(|"1000 sa| |00001cf0| 6d 70 6c 65 73 20 72 6d | 73 20 25 2e 32 66 5c 6e |mples rm|s %.2f\n| |00001d00| 22 2c 73 71 72 74 28 6d | 65 61 6e 2a 6d 65 61 6e |",sqrt(m|ean*mean| |00001d10| 2b 73 64 2a 73 64 29 29 | 3b 0d 09 09 70 72 69 6e |+sd*sd))|;...prin| |00001d20| 74 66 28 22 5c 6e 22 29 | 3b 0d 09 09 66 6f 72 28 |tf("\n")|;...for(| |00001d30| 69 3d 30 3b 69 3c 31 30 | 30 30 3b 69 2b 2b 29 7b |i=0;i<10|00;i++){| |00001d40| 0d 09 09 09 78 3d 4e 6f | 72 6d 61 6c 53 61 6d 70 |....x=No|rmalSamp| |00001d50| 6c 65 28 29 3b 0d 09 09 | 09 79 3d 4e 6f 72 6d 61 |le();...|.y=Norma| |00001d60| 6c 53 61 6d 70 6c 65 28 | 29 3b 0d 09 09 09 7a 5b |lSample(|);....z[| |00001d70| 69 5d 3d 73 71 72 74 28 | 28 78 2a 78 2b 79 2a 79 |i]=sqrt(|(x*x+y*y| |00001d80| 29 2f 32 2e 29 3b 0d 09 | 09 7d 0d 09 09 6d 65 61 |)/2.);..|.}...mea| |00001d90| 6e 3d 4d 65 61 6e 28 7a | 2c 31 30 30 30 2c 26 73 |n=Mean(z|,1000,&s| |00001da0| 64 29 3b 0d 09 09 70 72 | 69 6e 74 66 28 22 31 30 |d);...pr|intf("10| |00001db0| 30 30 20 28 78 2c 79 29 | 20 6e 6f 72 6d 61 6c 20 |00 (x,y)| normal | |00001dc0| 73 61 6d 70 6c 65 73 20 | 77 69 74 68 20 73 64 20 |samples |with sd | |00001dd0| 32 5e 2d 30 2e 35 20 68 | 61 76 65 20 72 6d 73 20 |2^-0.5 h|ave rms | |00001de0| 68 79 70 6f 74 65 6e 75 | 73 65 20 6f 66 20 25 2e |hypotenu|se of %.| |00001df0| 32 66 5c 6e 22 2c 73 71 | 72 74 28 6d 65 61 6e 2a |2f\n",sq|rt(mean*| |00001e00| 6d 65 61 6e 2b 73 64 2a | 73 64 29 29 3b 0d 09 09 |mean+sd*|sd));...| |00001e10| 70 72 69 6e 74 66 28 22 | 5c 6e 22 29 3b 0d 09 0d |printf("|\n");...| |00001e20| 09 09 61 3d 34 2e 30 2a | 61 74 61 6e 28 31 2e 30 |..a=4.0*|atan(1.0| |00001e30| 29 3b 0d 09 09 69 66 28 | 61 21 3d 50 49 29 70 72 |);...if(|a!=PI)pr| |00001e40| 69 6e 74 66 28 22 34 2a | 61 74 61 6e 28 31 29 2d |intf("4*|atan(1)-| |00001e50| 50 49 20 25 2e 31 39 66 | 5c 6e 22 2c 61 2d 50 49 |PI %.19f|\n",a-PI| |00001e60| 29 3b 0d 09 09 61 3d 6c | 6f 67 28 61 29 3b 0d 09 |);...a=l|og(a);..| |00001e70| 09 69 66 28 61 21 3d 4c | 4f 47 50 49 29 70 72 69 |.if(a!=L|OGPI)pri| |00001e80| 6e 74 66 28 22 45 72 72 | 6f 72 3a 20 6c 6f 67 28 |ntf("Err|or: log(| |00001e90| 50 49 29 20 25 2e 31 39 | 66 2c 20 65 72 72 6f 72 |PI) %.19|f, error| |00001ea0| 20 69 6e 20 4c 4f 47 50 | 49 20 25 2e 31 39 66 5c | in LOGP|I %.19f\| |00001eb0| 6e 22 2c 61 2c 4c 4f 47 | 50 49 2d 61 29 3b 0d 09 |n",a,LOG|PI-a);..| |00001ec0| 09 61 3d 6c 6f 67 28 32 | 2e 30 29 3b 0d 09 09 69 |.a=log(2|.0);...i| |00001ed0| 66 28 61 21 3d 4c 4f 47 | 32 29 70 72 69 6e 74 66 |f(a!=LOG|2)printf| |00001ee0| 28 22 45 72 72 6f 72 3a | 20 6c 6f 67 28 32 29 20 |("Error:| log(2) | |00001ef0| 25 2e 31 39 66 2c 20 65 | 72 72 6f 72 20 69 6e 20 |%.19f, e|rror in | |00001f00| 4c 4f 47 32 20 25 2e 31 | 39 66 5c 6e 22 2c 61 2c |LOG2 %.1|9f\n",a,| |00001f10| 4c 4f 47 32 2d 61 29 3b | 0d 09 7d 0d 23 65 6e 64 |LOG2-a);|..}.#end| |00001f20| 69 66 0d 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |if......|........| |00001f30| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001f40| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001f50| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001f60| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001f70| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001f80| 00 00 01 00 00 00 02 2a | 00 00 01 2a 00 00 00 52 |.......*|...*...R| |00001f90| 28 78 29 0d 2f 2a 20 47 | 61 75 73 73 69 61 6e 20 |(x)./* G|aussian | |00001fa0| 70 64 66 20 2a 2f 0d 64 | 6f 75 62 6c 65 20 78 3b |pdf */.d|ouble x;| |00001fb0| 08 4e 6f 72 6d 61 6c 2e | 63 00 02 00 00 00 50 61 |.Normal.|c.....Pa| |00001fc0| 72 74 53 49 54 21 00 00 | 00 00 00 00 00 00 00 00 |rtSIT!..|........| |00001fd0| 00 00 50 61 72 74 53 49 | 54 21 00 00 00 00 00 00 |..PartSI|T!......| |00001fe0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001ff0| 00 00 ab bf ee 67 00 00 | 00 00 00 00 02 7c 61 74 |.....g..|.....|at| |00002000| 69 76 65 20 6e 6f 72 6d | 61 6c 20 64 69 73 74 72 |ive norm|al distr| |00002010| 69 62 75 74 69 6f 6e 2e | 20 46 72 6f 6d 20 41 62 |ibution.| From Ab| |00002020| 72 61 6d 6f 77 69 74 7a | 20 61 6e 64 20 53 74 65 |ramowitz| and Ste| |00002030| 67 75 6e 20 45 71 2e 20 | 28 32 36 2e 32 2e 31 37 |gun Eq. |(26.2.17| |00002040| 29 2e 0d 45 72 72 6f 72 | 20 7c 65 7c 3c 37 2e 35 |)..Error| |e|<7.5| |00002050| 20 31 30 5e 2d 38 0d 2a | 2f 0d 7b 0d 09 64 6f 75 | 10^-8.*|/.{..dou| |00002060| 62 6c 65 20 50 2c 74 2c | 74 74 3b 0d 09 0d 09 69 |ble P,t,|tt;....i| |00002070| 66 28 78 3c 30 2e 30 29 | 20 72 65 74 75 72 6e 20 |f(x<0.0)| return | |00002080| 00 00 00 d2 00 0a 00 00 | 0c 71 00 00 0c 7a 09 4e |........|.q...z.N| |00002090| 6f 72 6d 61 6c 50 64 66 | 00 00 0d 08 00 00 0d 0e |ormalPdf|........| |000020a0| 07 4e 6f 72 6d 61 6c 00 | 00 00 0e 56 00 00 0e 63 |.Normal.|...V...c| |000020b0| 0d 49 6e 76 65 72 73 65 | 4e 6f 72 6d 61 6c 00 00 |.Inverse|Normal..| |000020c0| 0f db 00 00 0f e7 0d 4e | 6f 72 6d 61 6c 53 61 6d |.......N|ormalSam| |000020d0| 70 6c 65 00 00 00 10 22 | 00 00 10 2d 0b 4e 6f 72 |ple...."|...-.Nor| |000020e0| 6d 61 6c 32 44 50 64 66 | 00 00 11 38 00 00 11 40 |mal2DPdf|...8...@| |000020f0| 09 4e 6f 72 6d 61 6c 32 | 44 00 00 00 11 cc 00 00 |.Normal2|D.......| |00002100| 11 db 0f 49 6e 76 65 72 | 73 65 4e 6f 72 6d 61 6c |...Inver|seNormal| |00002110| 32 44 00 00 12 43 00 00 | 12 51 0f 4e 6f 72 6d 61 |2D...C..|.Q.Norma| |00002120| 6c 32 44 53 61 6d 70 6c | 65 00 00 00 13 e7 00 00 |l2DSampl|e.......| |00002130| 13 fc 15 42 6f 75 6e 64 | 65 64 4e 6f 72 6d 61 6c |...Bound|edNormal| |00002140| 49 6e 74 65 67 65 72 73 | 00 00 16 80 00 00 16 84 |Integers|........| |00002150| 05 6d 61 69 6e 00 00 00 | 00 48 00 09 4d 6f 6e 61 |.main...|.H..Mona| |00002160| 63 6f 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |co......|........| |00002170| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 03 00 04 |........|........| |00002180| 00 3c 00 03 01 8c 02 7d | 00 3c 00 03 01 8c 02 7d |.<.....}|.<.....}| |00002190| ab 9a 5e 46 00 00 06 03 | 00 00 06 03 00 00 00 a1 |..^F....|........| |000021a0| 00 00 00 00 00 04 00 01 | 00 01 00 00 01 00 00 00 |........|........| |000021b0| 02 2a 00 00 01 2a 00 00 | 00 52 00 af 08 94 21 6c |.*...*..|.R....!l| |000021c0| 00 00 00 1c 00 52 00 01 | 4d 50 53 52 00 01 00 12 |.....R..|MPSR....| |000021d0| 4d 57 42 42 00 00 00 2a | 03 ef ff ff 00 00 00 00 |MWBB...*|........| |000021e0| 00 00 00 00 03 ed ff ff | 00 00 00 d6 00 00 00 00 |........|........| |000021f0| 03 f0 ff ff 00 00 01 22 | 00 00 00 00 00 00 00 00 |......."|........| +--------+-------------------------+-------------------------+--------+--------+