home *** CD-ROM | disk | FTP | other *** search
/ BBS in a Box 15 / BBS in a box XV-2.iso / Files II / Prog / U-Z / VideoToolbox 4.95.sit / VideoToolbox / VideoToolboxSources / Normal.c < prev    next >
MacBinary  |  1995-03-25  |  8.5 KB  |  [TEXT/MMCC]

open in: MacOS 8.1     |     Win98     |     DOS

browse contents    |     view JSON data     |     view as text


This file was processed as: MacBinary (archive/macBinary).

ConfidenceProgramDetectionMatch TypeSupport
66% dexvert Compact Compressed (Unix) (archive/compact) ext Supported
10% dexvert MacBinary (archive/macBinary) fallback Supported
1% dexvert Text File (text/txt) fallback Supported
100% file MacBinary II, Sat Mar 25 23:56:46 1995, modified Sat Mar 25 23:56:46 1995, creator 'MMCC', type ASCII, 7843 bytes "Normal.c" , at 0x1f23 636 bytes resource default (weak)
99% file data default
74% TrID Macintosh plain text (MacBinary) default
25% TrID MacBinary 2 default (weak)
100% siegfried fmt/1762 MacBinary (II) default
100% lsar MacBinary default


id metadata
keyvalue
macFileType[TEXT]
macFileCreator[MMCC]



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 00 08 4e 6f 72 6d 61 6c | 2e 63 00 00 00 00 00 00 |..Normal|.c......|
|00000010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000040| 00 54 45 58 54 4d 4d 43 | 43 00 00 00 00 00 00 00 |.TEXTMMC|C.......|
|00000050| 00 00 00 00 00 1e a3 00 | 00 02 7c ab 9a a4 8e ab |........|..|.....|
|00000060| 9a a4 8e 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 a4 69 00 00 |........|.....i..|
|00000080| 2f 2a 0d 4e 6f 72 6d 61 | 6c 2e 63 0d 73 74 61 74 |/*.Norma|l.c.stat|
|00000090| 69 73 74 69 63 61 6c 20 | 66 75 6e 63 74 69 6f 6e |istical |function|
|000000a0| 73 20 72 65 6c 61 74 65 | 64 20 74 6f 20 74 68 65 |s relate|d to the|
|000000b0| 20 6e 6f 72 6d 61 6c 20 | 64 69 73 74 72 69 62 75 | normal |distribu|
|000000c0| 74 69 6f 6e 2e 0d 41 6c | 73 6f 20 73 65 65 3a 20 |tion..Al|so see: |
|000000d0| 42 69 6e 6f 6d 69 61 6c | 2e 63 2c 43 68 69 53 71 |Binomial|.c,ChiSq|
|000000e0| 75 61 72 65 2e 63 2c 20 | 45 78 70 6f 6e 65 6e 74 |uare.c, |Exponent|
|000000f0| 69 61 6c 2e 63 2c 20 55 | 6e 69 66 6f 72 6d 2e 63 |ial.c, U|niform.c|
|00000100| 0d 0d 09 66 3d 4e 6f 72 | 6d 61 6c 50 64 66 28 78 |...f=Nor|malPdf(x|
|00000110| 29 3b 0d 09 70 3d 4e 6f | 72 6d 61 6c 28 78 29 3b |);..p=No|rmal(x);|
|00000120| 0d 09 78 3d 49 6e 76 65 | 72 73 65 4e 6f 72 6d 61 |..x=Inve|rseNorma|
|00000130| 6c 28 70 29 3b 0d 09 78 | 3d 4e 6f 72 6d 61 6c 53 |l(p);..x|=NormalS|
|00000140| 61 6d 70 6c 65 28 29 3b | 0d 09 66 3d 4e 6f 72 6d |ample();|..f=Norm|
|00000150| 61 6c 32 44 50 64 66 28 | 64 6f 75 62 6c 65 20 72 |al2DPdf(|double r|
|00000160| 29 3b 0d 09 70 3d 4e 6f | 72 6d 61 6c 32 44 28 72 |);..p=No|rmal2D(r|
|00000170| 29 3b 0d 09 72 3d 49 6e | 76 65 72 73 65 4e 6f 72 |);..r=In|verseNor|
|00000180| 6d 61 6c 32 44 28 70 29 | 3b 0d 09 72 3d 4e 6f 72 |mal2D(p)|;..r=Nor|
|00000190| 6d 61 6c 32 44 53 61 6d | 70 6c 65 28 29 3b 0d 4e |mal2DSam|ple();.N|
|000001a0| 6f 72 6d 61 6c 32 44 20 | 69 73 20 61 20 47 61 75 |ormal2D |is a Gau|
|000001b0| 73 73 69 61 6e 20 70 64 | 66 20 6f 76 65 72 20 74 |ssian pd|f over t|
|000001c0| 77 6f 20 64 69 6d 65 6e | 73 69 6f 6e 73 2c 20 69 |wo dimen|sions, i|
|000001d0| 6e 74 65 67 72 61 74 65 | 64 20 6f 76 65 72 20 61 |ntegrate|d over a|
|000001e0| 6c 6c 20 6f 72 69 65 6e | 74 61 74 69 6f 6e 73 2c |ll orien|tations,|
|000001f0| 0d 30 20 74 6f 20 32 b9 | 2e 20 72 20 69 73 20 74 |.0 to 2.|. r is t|
|00000200| 68 65 20 64 69 73 74 61 | 6e 63 65 20 66 72 6f 6d |he dista|nce from|
|00000210| 20 74 68 65 20 6f 72 69 | 67 69 6e 2c 20 5b 30 2c | the ori|gin, [0,|
|00000220| 49 6e 66 5d 2e 20 0d 0d | 09 42 6f 75 6e 64 65 64 |Inf]. ..|.Bounded|
|00000230| 4e 6f 72 6d 61 6c 49 6e | 74 65 67 65 72 73 28 64 |NormalIn|tegers(d|
|00000240| 69 73 74 72 69 62 75 74 | 69 6f 6e 2c 6e 2c 6d 65 |istribut|ion,n,me|
|00000250| 61 6e 2c 73 64 2c 6d 69 | 6e 2c 6d 61 78 29 3b 0d |an,sd,mi|n,max);.|
|00000260| 46 69 6c 6c 73 20 74 68 | 65 20 22 64 69 73 74 72 |Fills th|e "distr|
|00000270| 69 62 75 74 69 6f 6e 22 | 20 61 72 72 61 79 20 77 |ibution"| array w|
|00000280| 69 74 68 20 6e 20 6f 72 | 64 65 72 65 64 20 69 6e |ith n or|dered in|
|00000290| 74 65 67 65 72 73 20 73 | 6f 20 74 68 61 74 20 72 |tegers s|o that r|
|000002a0| 61 6e 64 6f 6d 20 73 61 | 6d 70 6c 65 73 0d 66 72 |andom sa|mples.fr|
|000002b0| 6f 6d 20 74 68 65 20 61 | 72 72 61 79 2c 0d 09 69 |om the a|rray,..i|
|000002c0| 3d 64 69 73 74 72 69 62 | 75 74 69 6f 6e 5b 6e 72 |=distrib|ution[nr|
|000002d0| 61 6e 64 28 6e 29 5d 3b | 0d 77 69 6c 6c 20 68 61 |and(n)];|.will ha|
|000002e0| 76 65 2c 20 61 73 20 6e | 65 61 72 6c 79 20 61 73 |ve, as n|early as|
|000002f0| 20 70 6f 73 73 69 62 6c | 65 2c 20 74 68 65 20 73 | possibl|e, the s|
|00000300| 70 65 63 69 66 69 65 64 | 20 64 69 73 74 72 69 62 |pecified| distrib|
|00000310| 75 74 69 6f 6e 2c 20 69 | 2e 65 2e 20 74 68 65 79 |ution, i|.e. they|
|00000320| 20 77 69 6c 6c 0d 62 65 | 20 73 61 6d 70 6c 65 73 | will.be| samples|
|00000330| 20 28 72 6f 75 6e 64 65 | 64 20 74 6f 20 69 6e 74 | (rounde|d to int|
|00000340| 65 67 65 72 29 20 64 72 | 61 77 6e 20 66 72 6f 6d |eger) dr|awn from|
|00000350| 20 74 68 65 20 69 6e 74 | 65 72 76 61 6c 20 5b 6d | the int|erval [m|
|00000360| 69 6e 2d 2e 35 2c 6d 61 | 78 2b 2e 35 5d 2c 0d 77 |in-.5,ma|x+.5],.w|
|00000370| 68 65 72 65 20 6d 69 6e | 20 61 6e 64 20 6d 61 78 |here min| and max|
|00000380| 20 61 72 65 20 69 6e 74 | 65 67 65 72 73 2c 20 6f | are int|egers, o|
|00000390| 66 20 61 20 6e 6f 72 6d | 61 6c 20 64 69 73 74 72 |f a norm|al distr|
|000003a0| 69 62 75 74 69 6f 6e 20 | 77 69 74 68 20 74 68 65 |ibution |with the|
|000003b0| 20 73 70 65 63 69 66 69 | 65 64 0d 6d 65 61 6e 20 | specifi|ed.mean |
|000003c0| 61 6e 64 20 76 61 72 69 | 61 6e 63 65 2e 20 53 70 |and vari|ance. Sp|
|000003d0| 65 63 69 66 79 69 6e 67 | 20 61 6e 20 69 6e 66 69 |ecifying| an infi|
|000003e0| 6e 69 74 65 20 73 64 20 | 77 69 6c 6c 20 72 65 73 |nite sd |will res|
|000003f0| 75 6c 74 20 69 6e 20 61 | 20 75 6e 69 66 6f 72 6d |ult in a| uniform|
|00000400| 0d 64 69 73 74 72 69 62 | 75 74 69 6f 6e 20 6f 76 |.distrib|ution ov|
|00000410| 65 72 20 74 68 65 20 69 | 6e 74 65 72 76 61 6c 20 |er the i|nterval |
|00000420| 5b 6d 69 6e 2c 6d 61 78 | 5d 2e 20 28 54 68 69 73 |[min,max|]. (This|
|00000430| 20 69 73 20 64 65 74 65 | 63 74 65 64 20 61 73 20 | is dete|cted as |
|00000440| 61 20 73 70 65 63 69 61 | 6c 0d 63 61 73 65 20 61 |a specia|l.case a|
|00000450| 6e 64 20 70 65 72 66 6f | 72 6d 65 64 20 71 75 69 |nd perfo|rmed qui|
|00000460| 63 6b 6c 79 2e 29 20 4f | 6e 63 65 20 74 68 65 20 |ckly.) O|nce the |
|00000470| 64 69 73 74 72 69 62 75 | 74 69 6f 6e 20 61 72 72 |distribu|tion arr|
|00000480| 61 79 20 68 61 73 20 62 | 65 65 6e 20 66 69 6c 6c |ay has b|een fill|
|00000490| 65 64 2c 0d 72 61 6e 64 | 6f 6d 20 73 61 6d 70 6c |ed,.rand|om sampl|
|000004a0| 65 73 20 66 72 6f 6d 20 | 69 74 20 61 72 65 20 61 |es from |it are a|
|000004b0| 20 66 61 73 74 20 77 61 | 79 20 6f 66 20 67 65 6e | fast wa|y of gen|
|000004c0| 65 72 61 74 69 6e 67 20 | 62 6f 75 6e 64 65 64 20 |erating |bounded |
|000004d0| 47 61 75 73 73 69 61 6e | 20 6e 6f 69 73 65 0d 74 |Gaussian| noise.t|
|000004e0| 6f 20 62 65 20 61 64 64 | 65 64 20 74 6f 20 65 61 |o be add|ed to ea|
|000004f0| 63 68 20 70 69 78 65 6c | 20 6f 66 20 61 6e 20 69 |ch pixel| of an i|
|00000500| 6d 61 67 65 2e 20 4e 6f | 74 65 20 74 68 61 74 20 |mage. No|te that |
|00000510| 22 6d 65 61 6e 22 20 61 | 6e 64 20 22 73 64 22 20 |"mean" a|nd "sd" |
|00000520| 61 70 70 6c 79 20 6f 6e | 6c 79 0d 74 6f 20 74 68 |apply on|ly.to th|
|00000530| 65 20 75 6e 63 6c 69 70 | 70 65 64 20 75 6e 64 65 |e unclip|ped unde|
|00000540| 72 6c 79 69 6e 67 20 6e | 6f 72 6d 61 6c 20 64 69 |rlying n|ormal di|
|00000550| 73 74 72 69 62 75 74 69 | 6f 6e 2e 20 43 61 6c 6c |stributi|on. Call|
|00000560| 20 74 68 69 73 0d 09 6d | 65 61 6e 3d 4d 65 61 6e | this..m|ean=Mean|
|00000570| 57 28 64 69 73 74 72 69 | 62 75 74 69 6f 6e 2c 6e |W(distri|bution,n|
|00000580| 2c 26 73 64 29 3b 0d 74 | 6f 20 63 6f 6d 70 75 74 |,&sd);.t|o comput|
|00000590| 65 20 74 68 65 20 6d 65 | 61 6e 20 61 6e 64 20 73 |e the me|an and s|
|000005a0| 64 20 6f 66 20 79 6f 75 | 72 20 69 6e 74 65 67 65 |d of you|r intege|
|000005b0| 72 20 64 69 73 74 72 69 | 62 75 74 69 6f 6e 2e 20 |r distri|bution. |
|000005c0| 54 68 65 20 72 75 6e 74 | 69 6d 65 20 6f 66 20 0d |The runt|ime of .|
|000005d0| 42 6f 75 6e 64 65 64 4e | 6f 72 6d 61 6c 49 6e 74 |BoundedN|ormalInt|
|000005e0| 65 67 65 72 73 20 77 69 | 6c 6c 20 62 65 20 70 72 |egers wi|ll be pr|
|000005f0| 6f 70 6f 72 74 69 6f 6e | 61 6c 20 74 6f 20 6d 61 |oportion|al to ma|
|00000600| 78 2d 6d 69 6e 2b 31 2c | 20 61 6e 64 20 6e 65 61 |x-min+1,| and nea|
|00000610| 72 6c 79 20 69 6e 64 65 | 70 65 6e 64 65 6e 74 0d |rly inde|pendent.|
|00000620| 6f 66 20 6e 2e 20 49 74 | 20 74 61 6b 65 73 20 61 |of n. It| takes a|
|00000630| 62 6f 75 74 20 30 2e 33 | 20 73 20 6f 6e 20 61 20 |bout 0.3| s on a |
|00000640| 4d 61 63 20 49 49 63 69 | 20 66 6f 72 20 6d 61 78 |Mac IIci| for max|
|00000650| 2d 6d 69 6e 2b 31 3d 32 | 35 36 2e 0d 0d 43 6f 70 |-min+1=2|56...Cop|
|00000660| 79 72 69 67 68 74 20 28 | 63 29 20 31 39 38 39 2c |yright (|c) 1989,|
|00000670| 31 39 39 30 2c 31 39 39 | 31 2c 31 39 39 32 2c 31 |1990,199|1,1992,1|
|00000680| 39 39 35 20 44 65 6e 69 | 73 20 47 2e 20 50 65 6c |995 Deni|s G. Pel|
|00000690| 6c 69 0d 48 49 53 54 4f | 52 59 3a 0d 31 39 38 39 |li.HISTO|RY:.1989|
|000006a0| 09 64 67 70 20 77 72 6f | 74 65 20 69 74 2e 0d 34 |.dgp wro|te it..4|
|000006b0| 2f 38 2f 39 30 09 64 67 | 70 09 63 68 61 6e 67 65 |/8/90.dg|p.change|
|000006c0| 64 20 74 68 65 20 6e 61 | 6d 65 73 20 6f 66 20 74 |d the na|mes of t|
|000006d0| 68 65 20 72 6f 75 74 69 | 6e 65 73 2e 20 0d 09 09 |he routi|nes. ...|
|000006e0| 09 4d 61 64 65 20 73 75 | 72 65 20 74 68 61 74 20 |.Made su|re that |
|000006f0| 64 6f 6d 61 69 6e 20 65 | 72 72 6f 72 20 70 72 6f |domain e|rror pro|
|00000700| 64 75 63 65 73 20 4e 41 | 4e 2e 0d 36 2f 39 30 09 |duces NA|N..6/90.|
|00000710| 64 67 70 09 61 64 64 65 | 64 20 4e 6f 72 6d 61 6c |dgp.adde|d Normal|
|00000720| 53 61 6d 70 6c 65 28 29 | 0d 37 2f 33 30 2f 39 31 |Sample()|.7/30/91|
|00000730| 09 64 67 70 09 6e 6f 77 | 20 75 73 65 20 4e 41 4e |.dgp.now| use NAN|
|00000740| 20 64 65 66 69 6e 65 64 | 20 69 6e 20 56 69 64 65 | defined| in Vide|
|00000750| 6f 54 6f 6f 6c 62 6f 78 | 2e 68 0d 31 32 2f 32 38 |oToolbox|.h.12/28|
|00000760| 2f 39 31 20 64 67 70 20 | 73 70 65 64 20 75 70 20 |/91 dgp |sped up |
|00000770| 4e 6f 72 6d 61 6c 50 64 | 66 28 29 20 62 79 20 63 |NormalPd|f() by c|
|00000780| 61 6c 63 75 6c 61 74 69 | 6e 67 20 74 68 65 20 73 |alculati|ng the s|
|00000790| 63 61 6c 65 20 66 61 63 | 74 6f 72 20 6f 6e 6c 79 |cale fac|tor only|
|000007a0| 20 6f 6e 63 65 0d 31 32 | 2f 32 39 2f 39 31 20 64 | once.12|/29/91 d|
|000007b0| 67 70 20 65 78 74 72 61 | 63 74 65 64 20 63 6f 64 |gp extra|cted cod|
|000007c0| 65 20 74 6f 20 63 72 65 | 61 74 65 20 6e 65 77 20 |e to cre|ate new |
|000007d0| 72 6f 75 74 69 6e 65 20 | 55 6e 69 66 6f 72 6d 53 |routine |UniformS|
|000007e0| 61 6d 70 6c 65 2e 63 0d | 31 2f 31 31 2f 39 32 09 |ample.c.|1/11/92.|
|000007f0| 64 67 70 09 72 65 77 72 | 6f 74 65 20 4e 6f 72 6d |dgp.rewr|ote Norm|
|00000800| 61 6c 28 29 27 73 20 70 | 6f 6c 79 6e 6f 6d 69 61 |al()'s p|olynomia|
|00000810| 6c 20 65 76 61 6c 75 61 | 74 69 6f 6e 20 74 6f 20 |l evalua|tion to |
|00000820| 68 61 6c 76 65 20 74 68 | 65 20 6e 75 6d 62 65 72 |halve th|e number|
|00000830| 20 6f 66 20 6d 75 6c 74 | 69 70 6c 69 65 73 0d 09 | of mult|iplies..|
|00000840| 09 09 52 65 6e 61 6d 65 | 64 20 4e 6f 72 6d 61 6c |..Rename|d Normal|
|00000850| 50 44 46 28 29 20 74 6f | 20 4e 6f 72 6d 61 6c 50 |PDF() to| NormalP|
|00000860| 64 66 28 29 2e 0d 31 2f | 31 39 2f 39 32 09 64 67 |df()..1/|19/92.dg|
|00000870| 70 09 64 65 66 69 6e 65 | 64 20 74 68 65 20 63 6f |p.define|d the co|
|00000880| 6e 73 74 61 6e 74 73 20 | 4c 4f 47 32 20 61 6e 64 |nstants |LOG2 and|
|00000890| 20 4c 4f 47 50 49 20 69 | 6e 20 56 69 64 65 6f 54 | LOGPI i|n VideoT|
|000008a0| 6f 6f 6c 62 6f 78 2e 68 | 0d 09 09 09 41 64 64 65 |oolbox.h|....Adde|
|000008b0| 64 20 6d 6f 72 65 20 64 | 6f 6d 61 69 6e 20 74 65 |d more d|omain te|
|000008c0| 73 74 73 2c 20 72 65 74 | 75 72 6e 69 6e 67 20 4e |sts, ret|urning N|
|000008d0| 41 4e 20 69 66 20 6f 75 | 74 73 69 64 65 2e 20 0d |AN if ou|tside. .|
|000008e0| 09 09 09 41 64 64 65 64 | 20 6d 6f 72 65 20 63 68 |...Added| more ch|
|000008f0| 65 63 6b 73 20 74 6f 20 | 6d 61 69 6e 28 29 2e 0d |ecks to |main()..|
|00000900| 09 09 09 57 72 6f 74 65 | 20 4e 6f 72 6d 61 6c 32 |...Wrote| Normal2|
|00000910| 44 50 64 66 28 29 2c 4e | 6f 72 6d 61 6c 32 44 28 |DPdf(),N|ormal2D(|
|00000920| 29 2c 49 6e 76 65 72 73 | 65 4e 6f 72 6d 61 6c 32 |),Invers|eNormal2|
|00000930| 44 28 29 2c 61 6e 64 20 | 4e 6f 72 6d 61 6c 32 44 |D(),and |Normal2D|
|00000940| 53 61 6d 70 6c 65 28 29 | 2e 0d 32 2f 31 2f 39 32 |Sample()|..2/1/92|
|00000950| 09 64 67 70 09 52 65 64 | 65 66 69 6e 65 64 20 4e |.dgp.Red|efined N|
|00000960| 6f 72 6d 61 6c 32 44 50 | 64 66 28 72 29 20 74 6f |ormal2DP|df(r) to|
|00000970| 20 6e 6f 77 2c 20 6d 6f | 72 65 20 73 65 6e 73 69 | now, mo|re sensi|
|00000980| 62 6c 79 2c 20 74 72 65 | 61 74 20 72 20 61 73 20 |bly, tre|at r as |
|00000990| 74 68 65 20 72 61 6e 64 | 6f 6d 0d 09 09 09 76 61 |the rand|om....va|
|000009a0| 72 69 61 62 6c 65 2c 20 | 72 61 74 68 65 72 20 74 |riable, |rather t|
|000009b0| 68 61 6e 20 74 68 65 20 | 69 6d 70 6c 69 63 69 74 |han the |implicit|
|000009c0| 20 78 20 61 6e 64 20 79 | 2c 20 77 68 65 72 65 20 | x and y|, where |
|000009d0| 72 3d 73 71 72 74 28 78 | 5e 32 2b 79 5e 32 29 2e |r=sqrt(x|^2+y^2).|
|000009e0| 20 0d 09 09 09 50 72 65 | 76 69 6f 75 73 6c 79 2c | ....Pre|viously,|
|000009f0| 20 4e 6f 72 6d 61 6c 32 | 44 28 52 29 3d 49 6e 74 | Normal2|D(R)=Int|
|00000a00| 65 67 72 61 74 65 5b 32 | 20 50 69 20 72 20 4e 6f |egrate[2| Pi r No|
|00000a10| 72 6d 61 6c 32 44 50 64 | 66 28 72 29 2c 7b 72 2c |rmal2DPd|f(r),{r,|
|00000a20| 30 2c 52 7d 5d 0d 09 09 | 09 6e 6f 77 20 4e 6f 72 |0,R}]...|.now Nor|
|00000a30| 6d 61 6c 32 44 28 52 29 | 3d 49 6e 74 65 67 72 61 |mal2D(R)|=Integra|
|00000a40| 74 65 5b 4e 6f 72 6d 61 | 6c 32 44 50 64 66 28 72 |te[Norma|l2DPdf(r|
|00000a50| 29 2c 7b 72 2c 30 2c 52 | 7d 5d 2e 20 54 68 65 72 |),{r,0,R|}]. Ther|
|00000a60| 65 20 69 73 20 6e 6f 20 | 63 68 61 6e 67 65 0d 09 |e is no |change..|
|00000a70| 09 09 69 6e 20 4e 6f 72 | 6d 61 6c 32 44 28 29 2e |..in Nor|mal2D().|
|00000a80| 20 49 20 73 75 73 70 65 | 63 74 20 74 68 61 74 20 | I suspe|ct that |
|00000a90| 4e 6f 72 6d 61 6c 32 44 | 20 69 73 20 69 6e 20 66 |Normal2D| is in f|
|00000aa0| 61 63 74 20 74 68 65 20 | 52 61 6c 65 69 67 68 20 |act the |Raleigh |
|00000ab0| 64 69 73 74 72 69 62 75 | 74 69 6f 6e 2c 0d 09 09 |distribu|tion,...|
|00000ac0| 09 61 6e 64 20 49 20 77 | 69 6c 6c 20 72 65 6e 61 |.and I w|ill rena|
|00000ad0| 6d 65 20 69 74 20 69 66 | 20 74 68 69 73 20 69 73 |me it if| this is|
|00000ae0| 20 69 6e 20 66 61 63 74 | 20 74 68 65 20 63 61 73 | in fact| the cas|
|00000af0| 65 2e 0d 31 31 2f 31 33 | 2f 39 32 20 64 67 70 20 |e..11/13|/92 dgp |
|00000b00| 49 6e 76 65 72 73 65 4e | 6f 72 6d 61 6c 28 30 29 |InverseN|ormal(0)|
|00000b10| 20 6e 6f 77 20 72 65 74 | 75 72 6e 73 20 2d 49 4e | now ret|urns -IN|
|00000b20| 46 2c 20 61 6e 64 20 49 | 6e 76 65 72 73 65 4e 6f |F, and I|nverseNo|
|00000b30| 72 6d 61 6c 28 31 29 20 | 72 65 74 75 72 6e 73 20 |rmal(1) |returns |
|00000b40| 49 4e 46 2e 0d 31 32 2f | 31 35 2f 39 33 20 64 67 |INF..12/|15/93 dg|
|00000b50| 70 20 64 65 63 6c 61 72 | 65 64 20 73 6f 6d 65 20 |p declar|ed some |
|00000b60| 61 72 67 75 6d 65 6e 74 | 73 20 22 72 65 67 69 73 |argument|s "regis|
|00000b70| 74 65 72 22 2e 0d 33 2f | 32 36 2f 39 34 09 64 67 |ter"..3/|26/94.dg|
|00000b80| 70 09 61 64 64 65 64 20 | 42 6f 75 6e 64 65 64 4e |p.added |BoundedN|
|00000b90| 6f 72 6d 61 6c 49 6e 74 | 65 67 65 72 73 28 29 2e |ormalInt|egers().|
|00000ba0| 0d 09 09 09 41 73 6b 65 | 64 20 63 6f 6d 70 69 6c |....Aske|d compil|
|00000bb0| 65 72 20 74 6f 20 75 73 | 65 20 36 38 38 38 31 20 |er to us|e 68881 |
|00000bc0| 69 6e 73 74 72 75 63 74 | 69 6f 6e 73 20 66 6f 72 |instruct|ions for|
|00000bd0| 20 74 72 61 6e 73 63 65 | 6e 64 65 6e 74 61 6c 73 | transce|ndentals|
|00000be0| 2e 0d 2a 2f 0d 23 69 6e | 63 6c 75 64 65 20 22 56 |..*/.#in|clude "V|
|00000bf0| 69 64 65 6f 54 6f 6f 6c | 62 6f 78 2e 68 22 0d 23 |ideoTool|box.h".#|
|00000c00| 69 6e 63 6c 75 64 65 20 | 3c 61 73 73 65 72 74 2e |include |<assert.|
|00000c10| 68 3e 0d 23 69 6e 63 6c | 75 64 65 20 3c 6d 61 74 |h>.#incl|ude <mat|
|00000c20| 68 2e 68 3e 0d 23 69 6e | 63 6c 75 64 65 20 22 6d |h.h>.#in|clude "m|
|00000c30| 63 36 38 38 38 31 2e 68 | 22 0d 76 6f 69 64 20 42 |c68881.h|".void B|
|00000c40| 6f 75 6e 64 65 64 4e 6f | 72 6d 61 6c 49 6e 74 65 |oundedNo|rmalInte|
|00000c50| 67 65 72 73 28 73 68 6f | 72 74 20 2a 64 69 73 74 |gers(sho|rt *dist|
|00000c60| 72 69 62 75 74 69 6f 6e | 2c 6c 6f 6e 67 20 6e 2c |ribution|,long n,|
|00000c70| 64 6f 75 62 6c 65 20 6d | 65 61 6e 2c 64 6f 75 62 |double m|ean,doub|
|00000c80| 6c 65 20 73 64 0d 09 2c | 73 68 6f 72 74 20 6d 69 |le sd..,|short mi|
|00000c90| 6e 2c 73 68 6f 72 74 20 | 6d 61 78 29 3b 0d 23 69 |n,short |max);.#i|
|00000ca0| 66 20 54 48 49 4e 4b 5f | 43 20 26 26 20 6d 63 36 |f THINK_|C && mc6|
|00000cb0| 38 38 38 31 0d 09 23 64 | 65 66 69 6e 65 20 65 78 |8881..#d|efine ex|
|00000cc0| 70 20 5f 65 78 70 09 2f | 2a 20 75 73 65 20 66 61 |p _exp./|* use fa|
|00000cd0| 73 74 20 36 38 38 38 31 | 20 69 6e 73 74 72 75 63 |st 68881| instruc|
|00000ce0| 74 69 6f 6e 20 69 6e 73 | 74 65 61 64 20 6f 66 20 |tion ins|tead of |
|00000cf0| 53 41 4e 45 20 2a 2f 0d | 09 23 64 65 66 69 6e 65 |SANE */.|.#define|
|00000d00| 20 6c 6f 67 20 5f 6c 6f | 67 09 2f 2a 20 75 73 65 | log _lo|g./* use|
|00000d10| 20 66 61 73 74 20 36 38 | 38 38 31 20 69 6e 73 74 | fast 68|881 inst|
|00000d20| 72 75 63 74 69 6f 6e 20 | 69 6e 73 74 65 61 64 20 |ruction |instead |
|00000d30| 6f 66 20 53 41 4e 45 20 | 2a 2f 0d 09 23 64 65 66 |of SANE |*/..#def|
|00000d40| 69 6e 65 20 73 71 72 74 | 20 5f 73 71 72 74 09 2f |ine sqrt| _sqrt./|
|00000d50| 2a 20 75 73 65 20 66 61 | 73 74 20 36 38 38 38 31 |* use fa|st 68881|
|00000d60| 20 69 6e 73 74 72 75 63 | 74 69 6f 6e 20 69 6e 73 | instruc|tion ins|
|00000d70| 74 65 61 64 20 6f 66 20 | 53 41 4e 45 20 2a 2f 0d |tead of |SANE */.|
|00000d80| 23 65 6e 64 69 66 0d 0d | 64 6f 75 62 6c 65 20 4e |#endif..|double N|
|00000d90| 6f 72 6d 61 6c 50 64 66 | 28 72 65 67 69 73 74 65 |ormalPdf|(registe|
|00000da0| 72 20 64 6f 75 62 6c 65 | 20 78 29 0d 2f 2a 20 47 |r double| x)./* G|
|00000db0| 61 75 73 73 69 61 6e 20 | 70 64 66 2e 20 5a 65 72 |aussian |pdf. Zer|
|00000dc0| 6f 20 6d 65 61 6e 20 61 | 6e 64 20 75 6e 69 74 20 |o mean a|nd unit |
|00000dd0| 76 61 72 69 61 6e 63 65 | 2e 20 2a 2f 0d 7b 0d 09 |variance|. */.{..|
|00000de0| 69 66 28 49 73 4e 61 6e | 28 78 29 29 72 65 74 75 |if(IsNan|(x))retu|
|00000df0| 72 6e 20 78 3b 0d 09 72 | 65 74 75 72 6e 20 65 78 |rn x;..r|eturn ex|
|00000e00| 70 28 2d 30 2e 35 2a 28 | 78 2a 78 2b 28 4c 4f 47 |p(-0.5*(|x*x+(LOG|
|00000e10| 32 2b 4c 4f 47 50 49 29 | 29 29 3b 0d 7d 0d 0d 64 |2+LOGPI)|));.}..d|
|00000e20| 6f 75 62 6c 65 20 4e 6f | 72 6d 61 6c 28 72 65 67 |ouble No|rmal(reg|
|00000e30| 69 73 74 65 72 20 64 6f | 75 62 6c 65 20 78 29 0d |ister do|uble x).|
|00000e40| 2f 2a 0d 43 75 6d 75 6c | 61 74 69 76 65 20 6e 6f |/*.Cumul|ative no|
|00000e50| 72 6d 61 6c 20 64 69 73 | 74 72 69 62 75 74 69 6f |rmal dis|tributio|
|00000e60| 6e 2e 20 46 72 6f 6d 20 | 41 62 72 61 6d 6f 77 69 |n. From |Abramowi|
|00000e70| 74 7a 20 61 6e 64 20 53 | 74 65 67 75 6e 20 45 71 |tz and S|tegun Eq|
|00000e80| 2e 20 28 32 36 2e 32 2e | 31 37 29 2e 0d 45 72 72 |. (26.2.|17)..Err|
|00000e90| 6f 72 20 7c 65 7c 3c 37 | 2e 35 20 31 30 5e 2d 38 |or |e|<7|.5 10^-8|
|00000ea0| 0d 2a 2f 0d 7b 0d 09 72 | 65 67 69 73 74 65 72 20 |.*/.{..r|egister |
|00000eb0| 64 6f 75 62 6c 65 20 50 | 2c 74 3b 0d 09 0d 09 69 |double P|,t;....i|
|00000ec0| 66 28 78 3c 30 2e 30 29 | 20 72 65 74 75 72 6e 20 |f(x<0.0)| return |
|00000ed0| 31 2e 30 2d 4e 6f 72 6d | 61 6c 28 2d 78 29 3b 0d |1.0-Norm|al(-x);.|
|00000ee0| 09 74 3d 31 2e 30 2f 28 | 31 2e 30 2b 30 2e 32 33 |.t=1.0/(|1.0+0.23|
|00000ef0| 31 36 34 31 39 2a 78 29 | 3b 0d 09 50 3d 28 30 2e |16419*x)|;..P=(0.|
|00000f00| 33 31 39 33 38 31 35 33 | 30 2b 28 2d 30 2e 33 35 |31938153|0+(-0.35|
|00000f10| 36 35 36 33 37 38 32 2b | 28 31 2e 37 38 31 34 37 |6563782+|(1.78147|
|00000f20| 37 39 33 37 2b 28 2d 31 | 2e 38 32 31 32 35 35 39 |7937+(-1|.8212559|
|00000f30| 37 38 2b 31 2e 33 33 30 | 32 37 34 34 32 39 2a 74 |78+1.330|274429*t|
|00000f40| 29 2a 74 29 2a 74 29 2a | 74 29 2a 74 3b 0d 09 72 |)*t)*t)*|t)*t;..r|
|00000f50| 65 74 75 72 6e 20 31 2e | 30 2d 4e 6f 72 6d 61 6c |eturn 1.|0-Normal|
|00000f60| 50 64 66 28 78 29 2a 50 | 3b 0d 7d 0d 0d 64 6f 75 |Pdf(x)*P|;.}..dou|
|00000f70| 62 6c 65 20 49 6e 76 65 | 72 73 65 4e 6f 72 6d 61 |ble Inve|rseNorma|
|00000f80| 6c 28 72 65 67 69 73 74 | 65 72 20 64 6f 75 62 6c |l(regist|er doubl|
|00000f90| 65 20 70 29 0d 2f 2a 0d | 49 6e 76 65 72 73 65 20 |e p)./*.|Inverse |
|00000fa0| 6f 66 20 4e 6f 72 6d 61 | 6c 28 29 2c 20 62 61 73 |of Norma|l(), bas|
|00000fb0| 65 64 20 6f 6e 20 41 62 | 72 61 6d 6f 77 69 74 7a |ed on Ab|ramowitz|
|00000fc0| 20 61 6e 64 20 53 74 65 | 67 75 6e 20 45 71 2e 20 | and Ste|gun Eq. |
|00000fd0| 32 36 2e 32 2e 32 33 2e | 0d 45 72 72 6f 72 20 7c |26.2.23.|.Error ||
|00000fe0| 65 7c 3c 34 2e 35 20 31 | 30 5e 2d 34 2e 0d 2a 2f |e|<4.5 1|0^-4..*/|
|00000ff0| 0d 7b 0d 09 72 65 67 69 | 73 74 65 72 20 64 6f 75 |.{..regi|ster dou|
|00001000| 62 6c 65 20 74 2c 78 3b | 0d 09 0d 09 69 66 28 49 |ble t,x;|....if(I|
|00001010| 73 4e 61 6e 28 70 29 29 | 72 65 74 75 72 6e 20 70 |sNan(p))|return p|
|00001020| 3b 0d 09 69 66 28 70 3c | 30 2e 30 29 72 65 74 75 |;..if(p<|0.0)retu|
|00001030| 72 6e 20 4e 41 4e 3b 0d | 09 69 66 28 70 3d 3d 30 |rn NAN;.|.if(p==0|
|00001040| 2e 30 29 72 65 74 75 72 | 6e 20 2d 49 4e 46 3b 0d |.0)retur|n -INF;.|
|00001050| 09 69 66 28 70 3e 30 2e | 35 29 20 72 65 74 75 72 |.if(p>0.|5) retur|
|00001060| 6e 20 2d 49 6e 76 65 72 | 73 65 4e 6f 72 6d 61 6c |n -Inver|seNormal|
|00001070| 28 31 2e 30 2d 70 29 3b | 0d 09 74 3d 73 71 72 74 |(1.0-p);|..t=sqrt|
|00001080| 28 2d 32 2e 30 2a 6c 6f | 67 28 70 29 29 3b 0d 09 |(-2.0*lo|g(p));..|
|00001090| 78 3d 74 2d 28 32 2e 35 | 31 35 35 31 37 2b 28 30 |x=t-(2.5|15517+(0|
|000010a0| 2e 38 30 32 38 35 33 2b | 30 2e 30 31 30 33 32 38 |.802853+|0.010328|
|000010b0| 2a 74 29 2a 74 29 2f 28 | 31 2e 30 2b 28 31 2e 34 |*t)*t)/(|1.0+(1.4|
|000010c0| 33 32 37 38 38 2b 28 30 | 2e 31 38 39 32 36 39 2b |32788+(0|.189269+|
|000010d0| 30 2e 30 30 31 33 30 38 | 2a 74 29 2a 74 29 2a 74 |0.001308|*t)*t)*t|
|000010e0| 29 3b 0d 09 72 65 74 75 | 72 6e 20 2d 78 3b 0d 7d |);..retu|rn -x;.}|
|000010f0| 0d 0d 64 6f 75 62 6c 65 | 20 4e 6f 72 6d 61 6c 53 |..double| NormalS|
|00001100| 61 6d 70 6c 65 28 76 6f | 69 64 29 0d 7b 0d 09 72 |ample(vo|id).{..r|
|00001110| 65 74 75 72 6e 20 49 6e | 76 65 72 73 65 4e 6f 72 |eturn In|verseNor|
|00001120| 6d 61 6c 28 55 6e 69 66 | 6f 72 6d 53 61 6d 70 6c |mal(Unif|ormSampl|
|00001130| 65 28 29 29 3b 0d 7d 0d | 0d 64 6f 75 62 6c 65 20 |e());.}.|.double |
|00001140| 4e 6f 72 6d 61 6c 32 44 | 50 64 66 28 64 6f 75 62 |Normal2D|Pdf(doub|
|00001150| 6c 65 20 72 29 0d 2f 2a | 20 47 61 75 73 73 69 61 |le r)./*| Gaussia|
|00001160| 6e 20 70 64 66 20 6f 76 | 65 72 20 74 77 6f 20 64 |n pdf ov|er two d|
|00001170| 69 6d 65 6e 73 69 6f 6e | 73 2c 20 69 6e 74 65 67 |imension|s, integ|
|00001180| 72 61 74 65 64 20 6f 76 | 65 72 20 61 6c 6c 20 6f |rated ov|er all o|
|00001190| 72 69 65 6e 74 61 74 69 | 6f 6e 73 2c 20 30 20 74 |rientati|ons, 0 t|
|000011a0| 6f 20 32 b9 2e 20 2a 2f | 0d 2f 2a 20 54 68 65 20 |o 2.. */|./* The |
|000011b0| 61 72 67 75 6d 65 6e 74 | 20 69 73 20 74 61 6b 65 |argument| is take|
|000011c0| 6e 20 74 6f 20 62 65 20 | 74 68 65 20 64 69 73 74 |n to be |the dist|
|000011d0| 61 6e 63 65 20 66 72 6f | 6d 20 74 68 65 20 6f 72 |ance fro|m the or|
|000011e0| 69 67 69 6e 2c 20 5b 30 | 2c 49 6e 66 5d 2e 20 2a |igin, [0|,Inf]. *|
|000011f0| 2f 0d 2f 2a 20 54 68 65 | 20 72 6d 73 20 69 73 20 |/./* The| rms is |
|00001200| 31 20 2a 2f 0d 7b 0d 09 | 69 66 28 49 73 4e 61 6e |1 */.{..|if(IsNan|
|00001210| 28 72 29 29 72 65 74 75 | 72 6e 20 72 3b 0d 09 69 |(r))retu|rn r;..i|
|00001220| 66 28 72 3c 3d 30 2e 30 | 29 72 65 74 75 72 6e 20 |f(r<=0.0|)return |
|00001230| 30 2e 30 3b 0d 09 72 65 | 74 75 72 6e 20 32 2a 72 |0.0;..re|turn 2*r|
|00001240| 2a 65 78 70 28 2d 72 2a | 72 29 3b 0d 7d 0d 0d 64 |*exp(-r*|r);.}..d|
|00001250| 6f 75 62 6c 65 20 4e 6f | 72 6d 61 6c 32 44 28 64 |ouble No|rmal2D(d|
|00001260| 6f 75 62 6c 65 20 72 29 | 0d 2f 2a 20 49 6e 74 65 |ouble r)|./* Inte|
|00001270| 67 72 61 6c 20 6f 66 20 | 4e 6f 72 6d 61 6c 32 44 |gral of |Normal2D|
|00001280| 50 64 66 28 29 20 66 72 | 6f 6d 20 7a 65 72 6f 20 |Pdf() fr|om zero |
|00001290| 74 6f 20 72 2e 20 2a 2f | 0d 7b 0d 09 69 66 28 49 |to r. */|.{..if(I|
|000012a0| 73 4e 61 6e 28 72 29 29 | 72 65 74 75 72 6e 20 72 |sNan(r))|return r|
|000012b0| 3b 0d 09 69 66 28 72 3c | 3d 30 2e 30 29 72 65 74 |;..if(r<|=0.0)ret|
|000012c0| 75 72 6e 20 30 2e 30 3b | 0d 09 72 65 74 75 72 6e |urn 0.0;|..return|
|000012d0| 20 31 2e 30 2d 65 78 70 | 28 2d 72 2a 72 29 3b 0d | 1.0-exp|(-r*r);.|
|000012e0| 7d 0d 0d 64 6f 75 62 6c | 65 20 49 6e 76 65 72 73 |}..doubl|e Invers|
|000012f0| 65 4e 6f 72 6d 61 6c 32 | 44 28 64 6f 75 62 6c 65 |eNormal2|D(double|
|00001300| 20 70 29 0d 7b 0d 09 69 | 66 28 49 73 4e 61 6e 28 | p).{..i|f(IsNan(|
|00001310| 70 29 29 72 65 74 75 72 | 6e 20 70 3b 0d 09 69 66 |p))retur|n p;..if|
|00001320| 28 70 3c 30 2e 30 20 7c | 7c 20 70 3e 31 2e 30 29 |(p<0.0 ||| p>1.0)|
|00001330| 72 65 74 75 72 6e 20 4e | 41 4e 3b 0d 09 72 65 74 |return N|AN;..ret|
|00001340| 75 72 6e 20 73 71 72 74 | 28 2d 6c 6f 67 28 31 2e |urn sqrt|(-log(1.|
|00001350| 30 2d 70 29 29 3b 0d 7d | 0d 0d 64 6f 75 62 6c 65 |0-p));.}|..double|
|00001360| 20 4e 6f 72 6d 61 6c 32 | 44 53 61 6d 70 6c 65 28 | Normal2|DSample(|
|00001370| 76 6f 69 64 29 0d 2f 2a | 20 72 6d 73 20 69 73 20 |void)./*| rms is |
|00001380| 31 20 2a 2f 0d 7b 0d 09 | 72 65 74 75 72 6e 20 49 |1 */.{..|return I|
|00001390| 6e 76 65 72 73 65 4e 6f | 72 6d 61 6c 32 44 28 55 |nverseNo|rmal2D(U|
|000013a0| 6e 69 66 6f 72 6d 53 61 | 6d 70 6c 65 28 29 29 3b |niformSa|mple());|
|000013b0| 0d 7d 0d 0d 2f 2a 0d 09 | 49 6e 74 65 67 72 61 74 |.}../*..|Integrat|
|000013c0| 65 5b 65 78 70 28 2d 2e | 35 2a 75 5e 32 29 2c 7b |e[exp(-.|5*u^2),{|
|000013d0| 75 2c 61 2c 61 2b 31 2f | 73 64 7d 5d 0d 09 3d 65 |u,a,a+1/|sd}]..=e|
|000013e0| 78 70 28 2d 2e 35 2a 61 | 5e 32 29 2a 49 6e 74 65 |xp(-.5*a|^2)*Inte|
|000013f0| 67 72 61 74 65 5b 65 78 | 70 28 2d 2e 35 2a 28 28 |grate[ex|p(-.5*((|
|00001400| 61 2b 65 29 5e 32 2d 61 | 5e 32 29 29 2c 7b 65 2c |a+e)^2-a|^2)),{e,|
|00001410| 30 2c 31 2f 73 64 7d 5d | 0d 09 3d 65 78 70 28 2d |0,1/sd}]|..=exp(-|
|00001420| 2e 35 2a 61 5e 32 29 2a | 49 6e 74 65 67 72 61 74 |.5*a^2)*|Integrat|
|00001430| 65 5b 65 78 70 28 2d 2e | 35 2a 65 2a 65 29 2a 65 |e[exp(-.|5*e*e)*e|
|00001440| 78 70 28 2d 61 2a 65 29 | 2c 7b 65 2c 30 2c 31 2f |xp(-a*e)|,{e,0,1/|
|00001450| 73 64 7d 5d 0d 09 3d 65 | 78 70 28 2d 2e 35 2a 61 |sd}]..=e|xp(-.5*a|
|00001460| 5e 32 29 2a 49 6e 74 65 | 67 72 61 74 65 5b 28 31 |^2)*Inte|grate[(1|
|00001470| 2d 2e 35 2a 65 2a 65 29 | 2a 65 78 70 28 2d 61 2a |-.5*e*e)|*exp(-a*|
|00001480| 65 29 2c 7b 65 2c 30 2c | 31 2f 73 64 7d 5d 0d 09 |e),{e,0,|1/sd}]..|
|00001490| 3d 65 78 70 28 2d 2e 35 | 2a 61 5e 32 29 2a 28 28 |=exp(-.5|*a^2)*((|
|000014a0| 65 78 70 28 2d 61 2f 73 | 64 29 20 2d 20 31 29 2f |exp(-a/s|d) - 1)/|
|000014b0| 28 2d 61 29 2d 2e 35 2a | 49 6e 74 65 67 72 61 74 |(-a)-.5*|Integrat|
|000014c0| 65 5b 65 2a 65 2a 65 78 | 70 28 2d 61 2a 65 29 2c |e[e*e*ex|p(-a*e),|
|000014d0| 7b 65 2c 30 2c 31 2f 73 | 64 7d 5d 29 0d 09 3d 65 |{e,0,1/s|d}])..=e|
|000014e0| 78 70 28 2d 2e 35 2a 61 | 5e 32 29 2a 28 31 2d 65 |xp(-.5*a|^2)*(1-e|
|000014f0| 78 70 28 2d 61 2f 73 64 | 29 29 2f 61 0d 2a 2f 0d |xp(-a/sd|))/a.*/.|
|00001500| 76 6f 69 64 20 42 6f 75 | 6e 64 65 64 4e 6f 72 6d |void Bou|ndedNorm|
|00001510| 61 6c 49 6e 74 65 67 65 | 72 73 28 72 65 67 69 73 |alIntege|rs(regis|
|00001520| 74 65 72 20 73 68 6f 72 | 74 20 2a 64 69 73 74 72 |ter shor|t *distr|
|00001530| 69 62 75 74 69 6f 6e 2c | 6c 6f 6e 67 20 6e 2c 64 |ibution,|long n,d|
|00001540| 6f 75 62 6c 65 20 6d 65 | 61 6e 2c 64 6f 75 62 6c |ouble me|an,doubl|
|00001550| 65 20 73 64 0d 09 2c 73 | 68 6f 72 74 20 6d 69 6e |e sd..,s|hort min|
|00001560| 2c 73 68 6f 72 74 20 6d | 61 78 29 0d 7b 0d 09 72 |,short m|ax).{..r|
|00001570| 65 67 69 73 74 65 72 20 | 73 68 6f 72 74 20 69 3b |egister |short i;|
|00001580| 0d 09 72 65 67 69 73 74 | 65 72 20 6c 6f 6e 67 20 |..regist|er long |
|00001590| 6a 2c 63 6f 75 6e 74 2c | 76 61 6c 75 65 73 2c 72 |j,count,|values,r|
|000015a0| 6f 75 6e 64 3b 0d 09 64 | 6f 75 62 6c 65 20 70 2c |ound;..d|ouble p,|
|000015b0| 70 30 2c 70 31 2c 78 3b | 0d 09 73 68 6f 72 74 20 |p0,p1,x;|..short |
|000015c0| 73 68 6f 72 74 63 75 74 | 3b 0d 09 0d 09 6a 3d 30 |shortcut|;....j=0|
|000015d0| 3b 0d 09 69 66 28 49 73 | 49 6e 66 28 73 64 29 29 |;..if(Is|Inf(sd))|
|000015e0| 7b 0d 09 09 2f 2f 20 55 | 6e 69 66 6f 72 6d 20 64 |{...// U|niform d|
|000015f0| 69 73 74 72 69 62 75 74 | 69 6f 6e 20 6f 76 65 72 |istribut|ion over|
|00001600| 20 74 68 65 20 69 6e 74 | 65 72 76 61 6c 20 5b 6d | the int|erval [m|
|00001610| 69 6e 2c 6d 61 78 5d 0d | 09 09 76 61 6c 75 65 73 |in,max].|..values|
|00001620| 3d 6d 61 78 2d 6d 69 6e | 2b 31 3b 0d 09 09 61 73 |=max-min|+1;...as|
|00001630| 73 65 72 74 28 6e 3c 4c | 4f 4e 47 5f 4d 41 58 2f |sert(n<L|ONG_MAX/|
|00001640| 76 61 6c 75 65 73 29 3b | 0d 09 09 72 6f 75 6e 64 |values);|...round|
|00001650| 3d 76 61 6c 75 65 73 2f | 32 3b 0d 09 09 66 6f 72 |=values/|2;...for|
|00001660| 28 69 3d 6d 69 6e 3b 69 | 3c 6d 61 78 3b 69 2b 2b |(i=min;i|<max;i++|
|00001670| 29 7b 0d 09 09 09 63 6f | 75 6e 74 3d 28 28 69 2d |){....co|unt=((i-|
|00001680| 6d 69 6e 2b 31 29 2a 6e | 2b 72 6f 75 6e 64 29 2f |min+1)*n|+round)/|
|00001690| 76 61 6c 75 65 73 3b 0d | 09 09 09 77 68 69 6c 65 |values;.|...while|
|000016a0| 28 6a 3c 63 6f 75 6e 74 | 29 64 69 73 74 72 69 62 |(j<count|)distrib|
|000016b0| 75 74 69 6f 6e 5b 6a 2b | 2b 5d 3d 69 3b 0d 09 09 |ution[j+|+]=i;...|
|000016c0| 7d 0d 09 7d 65 6c 73 65 | 7b 09 0d 09 09 73 68 6f |}..}else|{....sho|
|000016d0| 72 74 63 75 74 3d 73 64 | 2a 73 64 3e 6e 3b 09 2f |rtcut=sd|*sd>n;./|
|000016e0| 2f 20 67 75 61 72 61 6e | 74 65 65 73 20 63 6f 75 |/ guaran|tees cou|
|000016f0| 6e 74 20 77 69 6c 6c 20 | 65 72 72 20 62 79 20 61 |nt will |err by a|
|00001700| 74 20 6d 6f 73 74 20 b1 | 30 2e 35 0d 09 09 70 3d |t most .|0.5...p=|
|00001710| 70 30 3d 4e 6f 72 6d 61 | 6c 28 28 6d 69 6e 2d 2e |p0=Norma|l((min-.|
|00001720| 35 2d 6d 65 61 6e 29 2f | 73 64 29 3b 0d 09 09 70 |5-mean)/|sd);...p|
|00001730| 31 3d 4e 6f 72 6d 61 6c | 28 28 6d 61 78 2b 2e 35 |1=Normal|((max+.5|
|00001740| 2d 6d 65 61 6e 29 2f 73 | 64 29 2d 70 30 3b 0d 09 |-mean)/s|d)-p0;..|
|00001750| 09 66 6f 72 28 69 3d 6d | 69 6e 3b 69 3c 6d 61 78 |.for(i=m|in;i<max|
|00001760| 3b 69 2b 2b 29 7b 0d 09 | 09 09 78 3d 28 69 2b 2e |;i++){..|..x=(i+.|
|00001770| 35 2d 6d 65 61 6e 29 2f | 73 64 3b 0d 09 09 09 69 |5-mean)/|sd;....i|
|00001780| 66 28 73 68 6f 72 74 63 | 75 74 29 70 2b 3d 4e 6f |f(shortc|ut)p+=No|
|00001790| 72 6d 61 6c 50 64 66 28 | 78 29 2a 28 65 78 70 28 |rmalPdf(|x)*(exp(|
|000017a0| 78 2f 73 64 29 2d 31 29 | 2f 78 3b 0d 09 09 09 65 |x/sd)-1)|/x;....e|
|000017b0| 6c 73 65 20 70 3d 4e 6f | 72 6d 61 6c 28 78 29 3b |lse p=No|rmal(x);|
|000017c0| 0d 09 09 09 63 6f 75 6e | 74 3d 30 2e 35 2b 6e 2a |....coun|t=0.5+n*|
|000017d0| 28 70 2d 70 30 29 2f 70 | 31 3b 0d 09 09 09 77 68 |(p-p0)/p|1;....wh|
|000017e0| 69 6c 65 28 6a 3c 63 6f | 75 6e 74 29 64 69 73 74 |ile(j<co|unt)dist|
|000017f0| 72 69 62 75 74 69 6f 6e | 5b 6a 2b 2b 5d 3d 69 3b |ribution|[j++]=i;|
|00001800| 0d 09 09 7d 0d 09 7d 0d | 09 77 68 69 6c 65 28 6a |...}..}.|.while(j|
|00001810| 3c 6e 29 64 69 73 74 72 | 69 62 75 74 69 6f 6e 5b |<n)distr|ibution[|
|00001820| 6a 2b 2b 5d 3d 6d 61 78 | 3b 0d 7d 0d 0d 0d 23 69 |j++]=max|;.}...#i|
|00001830| 66 20 30 20 2f 2a 20 41 | 20 74 65 73 74 20 70 72 |f 0 /* A| test pr|
|00001840| 6f 67 72 61 6d 2e 20 2a | 2f 0d 09 76 6f 69 64 20 |ogram. *|/..void |
|00001850| 6d 61 69 6e 28 29 0d 09 | 7b 0d 09 09 64 6f 75 62 |main()..|{...doub|
|00001860| 6c 65 20 78 2c 79 2c 73 | 75 6d 2c 64 78 2c 61 2c |le x,y,s|um,dx,a,|
|00001870| 62 2c 6d 65 61 6e 2c 73 | 64 3b 0d 09 09 73 74 61 |b,mean,s|d;...sta|
|00001880| 74 69 63 20 64 6f 75 62 | 6c 65 20 7a 5b 31 30 30 |tic doub|le z[100|
|00001890| 30 5d 3b 0d 09 09 69 6e | 74 20 69 3b 0d 09 09 0d |0];...in|t i;....|
|000018a0| 09 09 52 65 71 75 69 72 | 65 28 30 29 3b 0d 09 09 |..Requir|e(0);...|
|000018b0| 73 72 61 6e 64 28 63 6c | 6f 63 6b 28 29 29 3b 0d |srand(cl|ock());.|
|000018c0| 09 09 70 72 69 6e 74 66 | 28 22 25 34 73 25 31 35 |..printf|("%4s%15|
|000018d0| 73 25 31 35 73 25 32 30 | 73 25 31 35 73 5c 6e 22 |s%15s%20|s%15s\n"|
|000018e0| 2c 22 78 22 2c 22 4e 6f | 72 6d 61 6c 50 64 66 28 |,"x","No|rmalPdf(|
|000018f0| 78 29 22 2c 22 4e 6f 72 | 6d 61 6c 28 78 29 22 2c |x)","Nor|mal(x)",|
|00001900| 22 49 6e 76 65 72 73 65 | 4e 6f 72 6d 61 6c 22 2c |"Inverse|Normal",|
|00001910| 22 45 72 72 6f 72 22 29 | 3b 0d 09 09 66 6f 72 28 |"Error")|;...for(|
|00001920| 78 3d 2d 34 2e 30 3b 78 | 3c 3d 34 2e 30 3b 78 2b |x=-4.0;x|<=4.0;x+|
|00001930| 3d 32 2e 30 29 7b 0d 09 | 09 09 70 72 69 6e 74 66 |=2.0){..|..printf|
|00001940| 28 22 25 34 2e 31 66 25 | 31 35 2e 38 66 25 31 35 |("%4.1f%|15.8f%15|
|00001950| 2e 38 66 25 32 30 2e 34 | 66 25 31 35 2e 34 66 5c |.8f%20.4|f%15.4f\|
|00001960| 6e 22 2c 0d 09 09 09 78 | 2c 4e 6f 72 6d 61 6c 50 |n",....x|,NormalP|
|00001970| 64 66 28 78 29 2c 4e 6f | 72 6d 61 6c 28 78 29 2c |df(x),No|rmal(x),|
|00001980| 49 6e 76 65 72 73 65 4e | 6f 72 6d 61 6c 28 4e 6f |InverseN|ormal(No|
|00001990| 72 6d 61 6c 28 78 29 29 | 2c 49 6e 76 65 72 73 65 |rmal(x))|,Inverse|
|000019a0| 4e 6f 72 6d 61 6c 28 4e | 6f 72 6d 61 6c 28 78 29 |Normal(N|ormal(x)|
|000019b0| 29 2d 78 29 3b 0d 09 09 | 7d 0d 09 09 73 75 6d 3d |)-x);...|}...sum=|
|000019c0| 30 2e 30 3b 0d 09 09 64 | 78 3d 30 2e 30 30 31 3b |0.0;...d|x=0.001;|
|000019d0| 0d 09 09 66 6f 72 28 78 | 3d 2d 31 2e 3b 78 3c 30 |...for(x|=-1.;x<0|
|000019e0| 2e 3b 78 2b 3d 64 78 29 | 73 75 6d 2b 3d 4e 6f 72 |.;x+=dx)|sum+=Nor|
|000019f0| 6d 61 6c 50 64 66 28 78 | 29 3b 0d 09 09 73 75 6d |malPdf(x|);...sum|
|00001a00| 2a 3d 64 78 3b 0d 09 09 | 73 75 6d 2d 3d 4e 6f 72 |*=dx;...|sum-=Nor|
|00001a10| 6d 61 6c 28 30 2e 30 29 | 2d 4e 6f 72 6d 61 6c 28 |mal(0.0)|-Normal(|
|00001a20| 2d 31 2e 30 29 3b 0d 09 | 09 70 72 69 6e 74 66 28 |-1.0);..|.printf(|
|00001a30| 22 50 61 72 74 69 61 6c | 20 69 6e 74 65 67 72 61 |"Partial| integra|
|00001a40| 6c 20 6f 66 20 4e 6f 72 | 6d 61 6c 50 64 66 20 65 |l of Nor|malPdf e|
|00001a50| 72 72 6f 72 20 25 2e 35 | 66 5c 6e 22 2c 73 75 6d |rror %.5|f\n",sum|
|00001a60| 29 3b 0d 09 09 66 6f 72 | 28 69 3d 30 3b 69 3c 31 |);...for|(i=0;i<1|
|00001a70| 30 30 30 3b 69 2b 2b 29 | 7a 5b 69 5d 3d 4e 6f 72 |000;i++)|z[i]=Nor|
|00001a80| 6d 61 6c 53 61 6d 70 6c | 65 28 29 3b 0d 09 09 6d |malSampl|e();...m|
|00001a90| 65 61 6e 3d 4d 65 61 6e | 28 7a 2c 31 30 30 30 2c |ean=Mean|(z,1000,|
|00001aa0| 26 73 64 29 3b 0d 09 09 | 70 72 69 6e 74 66 28 22 |&sd);...|printf("|
|00001ab0| 31 30 30 30 20 73 61 6d | 70 6c 65 73 20 6d 65 61 |1000 sam|ples mea|
|00001ac0| 6e 20 25 2e 32 66 20 73 | 64 20 25 2e 32 66 5c 6e |n %.2f s|d %.2f\n|
|00001ad0| 22 2c 6d 65 61 6e 2c 73 | 64 29 3b 0d 09 09 70 72 |",mean,s|d);...pr|
|00001ae0| 69 6e 74 66 28 22 5c 6e | 22 29 3b 0d 09 0d 09 09 |intf("\n|");.....|
|00001af0| 70 72 69 6e 74 66 28 22 | 25 34 73 25 31 35 73 25 |printf("|%4s%15s%|
|00001b00| 31 35 73 25 32 30 73 25 | 31 35 73 5c 6e 22 2c 22 |15s%20s%|15s\n","|
|00001b10| 78 22 2c 22 4e 6f 72 6d | 61 6c 32 44 50 64 66 28 |x","Norm|al2DPdf(|
|00001b20| 78 29 22 2c 22 4e 6f 72 | 6d 61 6c 32 44 28 78 29 |x)","Nor|mal2D(x)|
|00001b30| 22 2c 22 49 6e 76 65 72 | 73 65 4e 6f 72 6d 61 6c |","Inver|seNormal|
|00001b40| 32 44 22 2c 22 45 72 72 | 6f 72 22 29 3b 0d 09 09 |2D","Err|or");...|
|00001b50| 66 6f 72 28 78 3d 2d 31 | 2e 3b 78 3c 3d 35 2e 30 |for(x=-1|.;x<=5.0|
|00001b60| 3b 78 2b 3d 31 2e 30 29 | 7b 0d 09 09 09 70 72 69 |;x+=1.0)|{....pri|
|00001b70| 6e 74 66 28 22 25 34 2e | 31 66 25 31 35 2e 38 66 |ntf("%4.|1f%15.8f|
|00001b80| 25 31 35 2e 38 66 25 32 | 30 2e 34 66 25 31 35 2e |%15.8f%2|0.4f%15.|
|00001b90| 34 66 5c 6e 22 2c 0d 09 | 09 09 78 2c 4e 6f 72 6d |4f\n",..|..x,Norm|
|00001ba0| 61 6c 32 44 50 64 66 28 | 78 29 2c 4e 6f 72 6d 61 |al2DPdf(|x),Norma|
|00001bb0| 6c 32 44 28 78 29 2c 49 | 6e 76 65 72 73 65 4e 6f |l2D(x),I|nverseNo|
|00001bc0| 72 6d 61 6c 32 44 28 4e | 6f 72 6d 61 6c 32 44 28 |rmal2D(N|ormal2D(|
|00001bd0| 78 29 29 2c 49 6e 76 65 | 72 73 65 4e 6f 72 6d 61 |x)),Inve|rseNorma|
|00001be0| 6c 32 44 28 4e 6f 72 6d | 61 6c 32 44 28 78 29 29 |l2D(Norm|al2D(x))|
|00001bf0| 2d 78 29 3b 0d 09 09 7d | 0d 09 09 73 75 6d 3d 30 |-x);...}|...sum=0|
|00001c00| 2e 30 3b 0d 09 09 64 78 | 3d 30 2e 30 30 30 31 3b |.0;...dx|=0.0001;|
|00001c10| 0d 09 09 66 6f 72 28 78 | 3d 30 3b 78 3c 31 2e 3b |...for(x|=0;x<1.;|
|00001c20| 78 2b 3d 64 78 29 73 75 | 6d 2b 3d 4e 6f 72 6d 61 |x+=dx)su|m+=Norma|
|00001c30| 6c 32 44 50 64 66 28 78 | 29 3b 0d 09 09 73 75 6d |l2DPdf(x|);...sum|
|00001c40| 2a 3d 64 78 3b 0d 09 09 | 73 75 6d 2d 3d 4e 6f 72 |*=dx;...|sum-=Nor|
|00001c50| 6d 61 6c 32 44 28 31 2e | 30 29 3b 0d 09 09 70 72 |mal2D(1.|0);...pr|
|00001c60| 69 6e 74 66 28 22 50 61 | 72 74 69 61 6c 20 69 6e |intf("Pa|rtial in|
|00001c70| 74 65 67 72 61 6c 20 6f | 66 20 4e 6f 72 6d 61 6c |tegral o|f Normal|
|00001c80| 32 44 50 64 66 20 65 72 | 72 6f 72 20 25 2e 35 66 |2DPdf er|ror %.5f|
|00001c90| 5c 6e 22 2c 73 75 6d 29 | 3b 0d 09 09 66 6f 72 28 |\n",sum)|;...for(|
|00001ca0| 69 3d 30 3b 69 3c 31 30 | 30 30 3b 69 2b 2b 29 7a |i=0;i<10|00;i++)z|
|00001cb0| 5b 69 5d 3d 4e 6f 72 6d | 61 6c 32 44 53 61 6d 70 |[i]=Norm|al2DSamp|
|00001cc0| 6c 65 28 29 3b 0d 09 09 | 6d 65 61 6e 3d 4d 65 61 |le();...|mean=Mea|
|00001cd0| 6e 28 7a 2c 31 30 30 30 | 2c 26 73 64 29 3b 0d 09 |n(z,1000|,&sd);..|
|00001ce0| 09 70 72 69 6e 74 66 28 | 22 31 30 30 30 20 73 61 |.printf(|"1000 sa|
|00001cf0| 6d 70 6c 65 73 20 72 6d | 73 20 25 2e 32 66 5c 6e |mples rm|s %.2f\n|
|00001d00| 22 2c 73 71 72 74 28 6d | 65 61 6e 2a 6d 65 61 6e |",sqrt(m|ean*mean|
|00001d10| 2b 73 64 2a 73 64 29 29 | 3b 0d 09 09 70 72 69 6e |+sd*sd))|;...prin|
|00001d20| 74 66 28 22 5c 6e 22 29 | 3b 0d 09 09 66 6f 72 28 |tf("\n")|;...for(|
|00001d30| 69 3d 30 3b 69 3c 31 30 | 30 30 3b 69 2b 2b 29 7b |i=0;i<10|00;i++){|
|00001d40| 0d 09 09 09 78 3d 4e 6f | 72 6d 61 6c 53 61 6d 70 |....x=No|rmalSamp|
|00001d50| 6c 65 28 29 3b 0d 09 09 | 09 79 3d 4e 6f 72 6d 61 |le();...|.y=Norma|
|00001d60| 6c 53 61 6d 70 6c 65 28 | 29 3b 0d 09 09 09 7a 5b |lSample(|);....z[|
|00001d70| 69 5d 3d 73 71 72 74 28 | 28 78 2a 78 2b 79 2a 79 |i]=sqrt(|(x*x+y*y|
|00001d80| 29 2f 32 2e 29 3b 0d 09 | 09 7d 0d 09 09 6d 65 61 |)/2.);..|.}...mea|
|00001d90| 6e 3d 4d 65 61 6e 28 7a | 2c 31 30 30 30 2c 26 73 |n=Mean(z|,1000,&s|
|00001da0| 64 29 3b 0d 09 09 70 72 | 69 6e 74 66 28 22 31 30 |d);...pr|intf("10|
|00001db0| 30 30 20 28 78 2c 79 29 | 20 6e 6f 72 6d 61 6c 20 |00 (x,y)| normal |
|00001dc0| 73 61 6d 70 6c 65 73 20 | 77 69 74 68 20 73 64 20 |samples |with sd |
|00001dd0| 32 5e 2d 30 2e 35 20 68 | 61 76 65 20 72 6d 73 20 |2^-0.5 h|ave rms |
|00001de0| 68 79 70 6f 74 65 6e 75 | 73 65 20 6f 66 20 25 2e |hypotenu|se of %.|
|00001df0| 32 66 5c 6e 22 2c 73 71 | 72 74 28 6d 65 61 6e 2a |2f\n",sq|rt(mean*|
|00001e00| 6d 65 61 6e 2b 73 64 2a | 73 64 29 29 3b 0d 09 09 |mean+sd*|sd));...|
|00001e10| 70 72 69 6e 74 66 28 22 | 5c 6e 22 29 3b 0d 09 0d |printf("|\n");...|
|00001e20| 09 09 61 3d 34 2e 30 2a | 61 74 61 6e 28 31 2e 30 |..a=4.0*|atan(1.0|
|00001e30| 29 3b 0d 09 09 69 66 28 | 61 21 3d 50 49 29 70 72 |);...if(|a!=PI)pr|
|00001e40| 69 6e 74 66 28 22 34 2a | 61 74 61 6e 28 31 29 2d |intf("4*|atan(1)-|
|00001e50| 50 49 20 25 2e 31 39 66 | 5c 6e 22 2c 61 2d 50 49 |PI %.19f|\n",a-PI|
|00001e60| 29 3b 0d 09 09 61 3d 6c | 6f 67 28 61 29 3b 0d 09 |);...a=l|og(a);..|
|00001e70| 09 69 66 28 61 21 3d 4c | 4f 47 50 49 29 70 72 69 |.if(a!=L|OGPI)pri|
|00001e80| 6e 74 66 28 22 45 72 72 | 6f 72 3a 20 6c 6f 67 28 |ntf("Err|or: log(|
|00001e90| 50 49 29 20 25 2e 31 39 | 66 2c 20 65 72 72 6f 72 |PI) %.19|f, error|
|00001ea0| 20 69 6e 20 4c 4f 47 50 | 49 20 25 2e 31 39 66 5c | in LOGP|I %.19f\|
|00001eb0| 6e 22 2c 61 2c 4c 4f 47 | 50 49 2d 61 29 3b 0d 09 |n",a,LOG|PI-a);..|
|00001ec0| 09 61 3d 6c 6f 67 28 32 | 2e 30 29 3b 0d 09 09 69 |.a=log(2|.0);...i|
|00001ed0| 66 28 61 21 3d 4c 4f 47 | 32 29 70 72 69 6e 74 66 |f(a!=LOG|2)printf|
|00001ee0| 28 22 45 72 72 6f 72 3a | 20 6c 6f 67 28 32 29 20 |("Error:| log(2) |
|00001ef0| 25 2e 31 39 66 2c 20 65 | 72 72 6f 72 20 69 6e 20 |%.19f, e|rror in |
|00001f00| 4c 4f 47 32 20 25 2e 31 | 39 66 5c 6e 22 2c 61 2c |LOG2 %.1|9f\n",a,|
|00001f10| 4c 4f 47 32 2d 61 29 3b | 0d 09 7d 0d 23 65 6e 64 |LOG2-a);|..}.#end|
|00001f20| 69 66 0d 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |if......|........|
|00001f30| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001f40| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001f50| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001f60| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001f70| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001f80| 00 00 01 00 00 00 02 2a | 00 00 01 2a 00 00 00 52 |.......*|...*...R|
|00001f90| 28 78 29 0d 2f 2a 20 47 | 61 75 73 73 69 61 6e 20 |(x)./* G|aussian |
|00001fa0| 70 64 66 20 2a 2f 0d 64 | 6f 75 62 6c 65 20 78 3b |pdf */.d|ouble x;|
|00001fb0| 08 4e 6f 72 6d 61 6c 2e | 63 00 02 00 00 00 50 61 |.Normal.|c.....Pa|
|00001fc0| 72 74 53 49 54 21 00 00 | 00 00 00 00 00 00 00 00 |rtSIT!..|........|
|00001fd0| 00 00 50 61 72 74 53 49 | 54 21 00 00 00 00 00 00 |..PartSI|T!......|
|00001fe0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001ff0| 00 00 ab bf ee 67 00 00 | 00 00 00 00 02 7c 61 74 |.....g..|.....|at|
|00002000| 69 76 65 20 6e 6f 72 6d | 61 6c 20 64 69 73 74 72 |ive norm|al distr|
|00002010| 69 62 75 74 69 6f 6e 2e | 20 46 72 6f 6d 20 41 62 |ibution.| From Ab|
|00002020| 72 61 6d 6f 77 69 74 7a | 20 61 6e 64 20 53 74 65 |ramowitz| and Ste|
|00002030| 67 75 6e 20 45 71 2e 20 | 28 32 36 2e 32 2e 31 37 |gun Eq. |(26.2.17|
|00002040| 29 2e 0d 45 72 72 6f 72 | 20 7c 65 7c 3c 37 2e 35 |)..Error| |e|<7.5|
|00002050| 20 31 30 5e 2d 38 0d 2a | 2f 0d 7b 0d 09 64 6f 75 | 10^-8.*|/.{..dou|
|00002060| 62 6c 65 20 50 2c 74 2c | 74 74 3b 0d 09 0d 09 69 |ble P,t,|tt;....i|
|00002070| 66 28 78 3c 30 2e 30 29 | 20 72 65 74 75 72 6e 20 |f(x<0.0)| return |
|00002080| 00 00 00 d2 00 0a 00 00 | 0c 71 00 00 0c 7a 09 4e |........|.q...z.N|
|00002090| 6f 72 6d 61 6c 50 64 66 | 00 00 0d 08 00 00 0d 0e |ormalPdf|........|
|000020a0| 07 4e 6f 72 6d 61 6c 00 | 00 00 0e 56 00 00 0e 63 |.Normal.|...V...c|
|000020b0| 0d 49 6e 76 65 72 73 65 | 4e 6f 72 6d 61 6c 00 00 |.Inverse|Normal..|
|000020c0| 0f db 00 00 0f e7 0d 4e | 6f 72 6d 61 6c 53 61 6d |.......N|ormalSam|
|000020d0| 70 6c 65 00 00 00 10 22 | 00 00 10 2d 0b 4e 6f 72 |ple...."|...-.Nor|
|000020e0| 6d 61 6c 32 44 50 64 66 | 00 00 11 38 00 00 11 40 |mal2DPdf|...8...@|
|000020f0| 09 4e 6f 72 6d 61 6c 32 | 44 00 00 00 11 cc 00 00 |.Normal2|D.......|
|00002100| 11 db 0f 49 6e 76 65 72 | 73 65 4e 6f 72 6d 61 6c |...Inver|seNormal|
|00002110| 32 44 00 00 12 43 00 00 | 12 51 0f 4e 6f 72 6d 61 |2D...C..|.Q.Norma|
|00002120| 6c 32 44 53 61 6d 70 6c | 65 00 00 00 13 e7 00 00 |l2DSampl|e.......|
|00002130| 13 fc 15 42 6f 75 6e 64 | 65 64 4e 6f 72 6d 61 6c |...Bound|edNormal|
|00002140| 49 6e 74 65 67 65 72 73 | 00 00 16 80 00 00 16 84 |Integers|........|
|00002150| 05 6d 61 69 6e 00 00 00 | 00 48 00 09 4d 6f 6e 61 |.main...|.H..Mona|
|00002160| 63 6f 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |co......|........|
|00002170| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 03 00 04 |........|........|
|00002180| 00 3c 00 03 01 8c 02 7d | 00 3c 00 03 01 8c 02 7d |.<.....}|.<.....}|
|00002190| ab 9a 5e 46 00 00 06 03 | 00 00 06 03 00 00 00 a1 |..^F....|........|
|000021a0| 00 00 00 00 00 04 00 01 | 00 01 00 00 01 00 00 00 |........|........|
|000021b0| 02 2a 00 00 01 2a 00 00 | 00 52 00 af 08 94 21 6c |.*...*..|.R....!l|
|000021c0| 00 00 00 1c 00 52 00 01 | 4d 50 53 52 00 01 00 12 |.....R..|MPSR....|
|000021d0| 4d 57 42 42 00 00 00 2a | 03 ef ff ff 00 00 00 00 |MWBB...*|........|
|000021e0| 00 00 00 00 03 ed ff ff | 00 00 00 d6 00 00 00 00 |........|........|
|000021f0| 03 f0 ff ff 00 00 01 22 | 00 00 00 00 00 00 00 00 |......."|........|
+--------+-------------------------+-------------------------+--------+--------+